Fretting Fatigue Damage Nucleation and Propagation Lifetime Using a Central Point Movement of Power Spectral Density
This paper presents a new perception in evaluating fretting fatigue damage nucleation and propagation lifetime under periodically forced circulation. A new approach, which is proposed in this paper, is to measure the change of the central point of power spectral density (CP-PSD) in different structu...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2020/4985134 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new perception in evaluating fretting fatigue damage nucleation and propagation lifetime under periodically forced circulation. A new approach, which is proposed in this paper, is to measure the change of the central point of power spectral density (CP-PSD) in different structural stiffness degradation stages. A notable aspect of this study lies in the combination between vibration amplitude and forced frequency of the fatigue-causing factors in beam structures. Additionally, it is found that randomization of the first phase from 0 to 2π yields more accurate modelling of the fatigue phenomenon. Results show that the CP-PSD parameter is significantly more sensitive compared to the regularly damage-evaluating parameters such as natural frequency, eigenvalues, or stress value. This reflects different levels of fatigue cycle effect on the structure in the experiment. At the same time, CP-PSD also categorizes the degradation level on different points on the structure under the periodically forced circulation. In addition, this paper also quantifies the relation between the changes of CP-PSD and each fatigue state. Results of this research will be a reference source to evaluate the lifespan of the structure by experimental methods. |
---|---|
ISSN: | 1070-9622 1875-9203 |