Newly identified single-nucleotide polymorphism associated with the transition from nonalcoholic fatty liver disease to liver fibrosis: results from a nested case-control study in the UK biobank

Background Genetic factors may have a significant influence on the likelihood of liver fibrosis in individuals with nonalcoholic fatty liver disease (NAFLD). The present study was conducted to explore how single-nucleotide polymorphism (SNP) impacts the development of fibrosis in those suffering fro...

Full description

Saved in:
Bibliographic Details
Main Authors: Yitong Ling, Yu Xuan Yang, Yan Chun Chen, Jing Hao Wang, Dong Ge Feng, Shi Jian Xiang, Xiaoyu Zhang, Jun Lyu, Sha Sha Li
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Annals of Medicine
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/07853890.2025.2458201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Genetic factors may have a significant influence on the likelihood of liver fibrosis in individuals with nonalcoholic fatty liver disease (NAFLD). The present study was conducted to explore how single-nucleotide polymorphism (SNP) impacts the development of fibrosis in those suffering from NAFLD.Materials and methods Utilizing the UK Biobank dataset, we conducted a nested case-control analysis among NAFLD participants, defining the case group as those with liver fibrosis and cirrhosis during follow-up. For our in vitro investigations, we employed the LX-2 human hepatic stellate cell line. Our procedures included cultivating these cells, employing SAMM50-rs2073080 plasmid techniques to enhance the expression of recently discovered SNPs, and conducting biochemical assays. To quantify gene expression, we used real-time PCR with fluorescence detection.Results The study analyzed data from 5467 participants (1094 cases and 4373 controls). Genome-wide association analysis identified nine significant loci, including the novel rs2073080 variant, strongly associated with NAFLD-associated hepatic fibrosis. In vitro TGF-β modeling revealed significant upregulation of α-SMA and COL1A1, confirming model effectiveness. Oxidative stress markers like elevated malondialdehyde (MDA) and reduced catalase (CAT) and superoxide dismutase (SOD) levels indicated liver damage in the TGF-β group. SAMM50-rs2073080 was upregulated in the NAFLD-associated fibrosis model. In vitro experiments on LX-2 cells showed that SAMM50-rs2073080 overexpression led to increased fibrosis, as indicated by higher cellular MDA levels and lower CAT and SOD levels, compared to the vector group.Conclusion Our research highlights a significant association of SAMM50-rs2073080 with the progression of NAFLD to hepatic fibrosis, and the in vitro experiments further corroborated these findings.
ISSN:0785-3890
1365-2060