Discretization of Optimal Control Problems Governed by p-Laplacian Elliptic Equations
In this paper, a state-constrained optimal control problem governed by p-Laplacian elliptic equations is studied. The feasible control set or the cost functional may be nonconvex, and the purpose is to obtain the convergence of a solution of the discretized control problem to an optimal control of t...
Saved in:
Main Author: | Shu Luan |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2019/2852815 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Multiple Solutions for the Discrete p-Laplacian Boundary Value Problems
by: Yuhua Long, et al.
Published: (2014-01-01) -
Multiplicity of Solutions for a Class of Elliptic Problem of p-Laplacian Type with a p-Gradient Term
by: Zakariya Chaouai, et al.
Published: (2019-01-01) -
Solvability for Discrete Fractional Boundary Value Problems with a p-Laplacian Operator
by: Weidong Lv
Published: (2013-01-01) -
Critical Blow-Up and Global Existence for Discrete Nonlinear p-Laplacian Parabolic Equations
by: Soon-Yeong Chung
Published: (2014-01-01) -
On Regularization of an Optimal Control Problem for Ill-Posed Nonlinear Elliptic Equations
by: Peter I. Kogut, et al.
Published: (2020-01-01)