Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope
Huangfan District silt exhibits discontinuous grading, low structural integrity, and insufficient binder content, failing to meet traffic subgrade specifications. This study employs alkali-activated basalt powder and slag (solid wastes) to form geopolymers for silt stabilization, analyzing stabilize...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-07-01
|
| Series: | Frontiers in Earth Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/feart.2025.1608064/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850104751028436992 |
|---|---|
| author | Lei Wang Wei Lu Jinsheng Cheng Jun Li Changjin Tian Weinan Lin Lingxiao Meng Yiwen Zhang |
| author_facet | Lei Wang Wei Lu Jinsheng Cheng Jun Li Changjin Tian Weinan Lin Lingxiao Meng Yiwen Zhang |
| author_sort | Lei Wang |
| collection | DOAJ |
| description | Huangfan District silt exhibits discontinuous grading, low structural integrity, and insufficient binder content, failing to meet traffic subgrade specifications. This study employs alkali-activated basalt powder and slag (solid wastes) to form geopolymers for silt stabilization, analyzing stabilized soil subgrade slope stability. Key findings: (1) Alkali-activated basalt-slag synergy enhances mutual hydration, producing N-A-S-H and C-A-S-H cementitious gels. (2) Geopolymer content positively correlates with compressive strength, peaking at 20% dosage (2.74 MPa) - a 30.4-fold increase over natural silt, exceeding specification requirements by 10.96-fold. (3) Shear strength increases with vertical pressure and additives (NaOH, Na2SiO3, slag), showing significantly improved internal friction angle and cohesion versus natural silt. (4) With the increase of the content of geopolymer in solidified soil, the maximum vertical displacement of the roadbed surface and the displacement of the slope gradually decrease. The stress is mainly concentrated in the tire grounding area and gradually decays along the depth direction. The vertical stress values at other positions of the road slope are maintained at a low level. |
| format | Article |
| id | doaj-art-8ececa1ed0ca45b4b7d082ef4cbe8968 |
| institution | DOAJ |
| issn | 2296-6463 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Earth Science |
| spelling | doaj-art-8ececa1ed0ca45b4b7d082ef4cbe89682025-08-20T02:39:16ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632025-07-011310.3389/feart.2025.16080641608064Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slopeLei Wang0Wei Lu1Jinsheng Cheng2Jun Li3Changjin Tian4Weinan Lin5Lingxiao Meng6Yiwen Zhang7School of Hydraulic and Civil Engineering, Ludong University, Yantai, ChinaCollege of Engineering, Ocean University of China, Qingdao, Shandong, ChinaChina Construction Infrastructure Corp., Ltd., Beijing, ChinaShandong Hi-Speed Construction Management Group Co., Ltd., Jinan, ChinaChina Construction Infrastructure Corp., Ltd., Beijing, ChinaSchool of Hydraulic and Civil Engineering, Ludong University, Yantai, ChinaChina Construction Infrastructure Corp., Ltd., Beijing, ChinaSchool of Hydraulic and Civil Engineering, Ludong University, Yantai, ChinaHuangfan District silt exhibits discontinuous grading, low structural integrity, and insufficient binder content, failing to meet traffic subgrade specifications. This study employs alkali-activated basalt powder and slag (solid wastes) to form geopolymers for silt stabilization, analyzing stabilized soil subgrade slope stability. Key findings: (1) Alkali-activated basalt-slag synergy enhances mutual hydration, producing N-A-S-H and C-A-S-H cementitious gels. (2) Geopolymer content positively correlates with compressive strength, peaking at 20% dosage (2.74 MPa) - a 30.4-fold increase over natural silt, exceeding specification requirements by 10.96-fold. (3) Shear strength increases with vertical pressure and additives (NaOH, Na2SiO3, slag), showing significantly improved internal friction angle and cohesion versus natural silt. (4) With the increase of the content of geopolymer in solidified soil, the maximum vertical displacement of the roadbed surface and the displacement of the slope gradually decrease. The stress is mainly concentrated in the tire grounding area and gradually decays along the depth direction. The vertical stress values at other positions of the road slope are maintained at a low level.https://www.frontiersin.org/articles/10.3389/feart.2025.1608064/fullsubgrade slopegeopolymerslope stabilitysolidified siltreinforced silt |
| spellingShingle | Lei Wang Wei Lu Jinsheng Cheng Jun Li Changjin Tian Weinan Lin Lingxiao Meng Yiwen Zhang Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope Frontiers in Earth Science subgrade slope geopolymer slope stability solidified silt reinforced silt |
| title | Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| title_full | Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| title_fullStr | Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| title_full_unstemmed | Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| title_short | Study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| title_sort | study on mechanical properties of solidified silt from waste rock powder and stability of subgrade slope |
| topic | subgrade slope geopolymer slope stability solidified silt reinforced silt |
| url | https://www.frontiersin.org/articles/10.3389/feart.2025.1608064/full |
| work_keys_str_mv | AT leiwang studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT weilu studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT jinshengcheng studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT junli studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT changjintian studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT weinanlin studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT lingxiaomeng studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope AT yiwenzhang studyonmechanicalpropertiesofsolidifiedsiltfromwasterockpowderandstabilityofsubgradeslope |