Kinetic Analysis of the Thermal Decomposition of Latex Foam according to Thermogravimetric Analysis

The thermal decomposition of latex foam was investigated under nonisothermal conditions. Pieces of commercial mattress samples were subjected to thermogravimetric analysis (TG) over a heating range from 5°C min−1 to 20°C min−1. The morphology of the latex foam before and after combustion was observe...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongwei Fan, Yongliang Chen, Dongmei Huang, Guoqin Wang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2016/8620879
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermal decomposition of latex foam was investigated under nonisothermal conditions. Pieces of commercial mattress samples were subjected to thermogravimetric analysis (TG) over a heating range from 5°C min−1 to 20°C min−1. The morphology of the latex foam before and after combustion was observed by scanning electron microscopy (SEM), and the primary chemical composition was investigated via infrared spectroscopy (FT-IR). The kinetic mechanism and relevant parameters were calculated. Results indicate that the decomposition of latex foam in the three major degradation phases is controlled by third-order reaction (F3) and by Zhuravlev’s diffusion equation (D5). The mean E values of each phase as calculated according to a single heating rate nonisothermal method are equal to 41.91 ± 0.06 kJ mol−1, 86.32 ± 1.04 kJ mol−1, and 19.53 ± 0.11 kJ mol−1, respectively. Correspondingly, the preexponential factors of each phase are equal to 300.39 s−1, 2355.65 s−1, and 27.90 s−1, respectively. The mean activation energy E and preexponential factor A of latex foam estimated according to multiple heating rates and a nonisothermal method are 92.82 kJ mol−1 and 1.12 × 10−3 s−1, respectively.
ISSN:1687-9422
1687-9430