Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>

Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP), a NASICON-type material, has gained attention as a promising battery cathode owing to its high sodium mobility and excellent structural stability. Using computational simulation techniques...

Full description

Saved in:
Bibliographic Details
Main Authors: Vijayabaskar Seshan, Poobalasuntharam Iyngaran, Poobalasingam Abiman, Navaratnarajah Kuganathan
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Physchem
Subjects:
Online Access:https://www.mdpi.com/2673-7167/5/1/1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850091187674808320
author Vijayabaskar Seshan
Poobalasuntharam Iyngaran
Poobalasingam Abiman
Navaratnarajah Kuganathan
author_facet Vijayabaskar Seshan
Poobalasuntharam Iyngaran
Poobalasingam Abiman
Navaratnarajah Kuganathan
author_sort Vijayabaskar Seshan
collection DOAJ
description Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP), a NASICON-type material, has gained attention as a promising battery cathode owing to its high sodium mobility and excellent structural stability. Using computational simulation techniques based on classical potentials and density functional theory (DFT), we examine the defect characteristics, diffusion mechanisms, and dopant behavior of the NVP. The study found that the Na Frenkel defect is the most favorable intrinsic defect, supporting the desodiation process necessary for capacity and enabling vacancy-assisted Na-ion migration. The Na migration is anticipated through a long-range zig-zag pathway with an overall activation energy of 0.70 eV. K and Sc preferentially occupy Na and V sites without creating charge-compensating defects. Substituting Mg at the V site can simultaneously increase Na content by forming interstitials and reducing the band gap. Additionally, doping Ti at the V site promotes the formation of Na vacancies necessary for vacancy-assisted migration, leading to a notable improvement in electronic conductivity.
format Article
id doaj-art-8e4554b6868445ecbb205ec0f8fb5e48
institution DOAJ
issn 2673-7167
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Physchem
spelling doaj-art-8e4554b6868445ecbb205ec0f8fb5e482025-08-20T02:42:25ZengMDPI AGPhyschem2673-71672024-12-0151110.3390/physchem5010001Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>Vijayabaskar Seshan0Poobalasuntharam Iyngaran1Poobalasingam Abiman2Navaratnarajah Kuganathan3Department of Chemistry, University of Jaffna, Jaffna 40000, Sri LankaDepartment of Chemistry, University of Jaffna, Jaffna 40000, Sri LankaDepartment of Chemistry, University of Jaffna, Jaffna 40000, Sri LankaDepartment of Materials, Faculty of Engineering, Imperial College London, London SW7 2AZ, UKNa<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP), a NASICON-type material, has gained attention as a promising battery cathode owing to its high sodium mobility and excellent structural stability. Using computational simulation techniques based on classical potentials and density functional theory (DFT), we examine the defect characteristics, diffusion mechanisms, and dopant behavior of the NVP. The study found that the Na Frenkel defect is the most favorable intrinsic defect, supporting the desodiation process necessary for capacity and enabling vacancy-assisted Na-ion migration. The Na migration is anticipated through a long-range zig-zag pathway with an overall activation energy of 0.70 eV. K and Sc preferentially occupy Na and V sites without creating charge-compensating defects. Substituting Mg at the V site can simultaneously increase Na content by forming interstitials and reducing the band gap. Additionally, doping Ti at the V site promotes the formation of Na vacancies necessary for vacancy-assisted migration, leading to a notable improvement in electronic conductivity.https://www.mdpi.com/2673-7167/5/1/1Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>defectsdopantsdiffusionDFT
spellingShingle Vijayabaskar Seshan
Poobalasuntharam Iyngaran
Poobalasingam Abiman
Navaratnarajah Kuganathan
Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
Physchem
Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
defects
dopants
diffusion
DFT
title Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
title_full Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
title_fullStr Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
title_full_unstemmed Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
title_short Atomic-Scale Study of NASICON Type Electrode Material: Defects, Dopants and Sodium-Ion Migration in Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
title_sort atomic scale study of nasicon type electrode material defects dopants and sodium ion migration in na sub 3 sub v sub 2 sub po sub 4 sub sub 3 sub
topic Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>
defects
dopants
diffusion
DFT
url https://www.mdpi.com/2673-7167/5/1/1
work_keys_str_mv AT vijayabaskarseshan atomicscalestudyofnasicontypeelectrodematerialdefectsdopantsandsodiumionmigrationinnasub3subvsub2subposub4subsub3sub
AT poobalasuntharamiyngaran atomicscalestudyofnasicontypeelectrodematerialdefectsdopantsandsodiumionmigrationinnasub3subvsub2subposub4subsub3sub
AT poobalasingamabiman atomicscalestudyofnasicontypeelectrodematerialdefectsdopantsandsodiumionmigrationinnasub3subvsub2subposub4subsub3sub
AT navaratnarajahkuganathan atomicscalestudyofnasicontypeelectrodematerialdefectsdopantsandsodiumionmigrationinnasub3subvsub2subposub4subsub3sub