AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition

<p>Aerosol particles are an important part of the Earth climate system, and their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact with incoming solar radiation and outgoing longwave radiation, change cloud pro...

Full description

Saved in:
Bibliographic Details
Main Authors: N. M. Mahowald, L. Li, J. Vira, M. Prank, D. S. Hamilton, H. Matsui, R. L. Miller, P. L. Lu, E. Akyuz, D. Meidan, P. Hess, H. Lihavainen, C. Wiedinmyer, J. Hand, M. G. Alaimo, C. Alves, A. Alastuey, P. Artaxo, A. Barreto, F. Barraza, S. Becagli, G. Calzolai, S. Chellam, Y. Chen, P. Chuang, D. D. Cohen, C. Colombi, E. Diapouli, G. Dongarra, K. Eleftheriadis, J. Engelbrecht, C. Galy-Lacaux, C. Gaston, D. Gomez, Y. González Ramos, R. M. Harrison, C. Heyes, B. Herut, P. Hopke, C. Hüglin, M. Kanakidou, Z. Kertesz, Z. Klimont, K. Kyllönen, F. Lambert, X. Liu, R. Losno, F. Lucarelli, W. Maenhaut, B. Marticorena, R. V. Martin, N. Mihalopoulos, Y. Morera-Gómez, A. Paytan, J. Prospero, S. Rodríguez, P. Smichowski, D. Varrica, B. Walsh, C. L. Weagle, X. Zhao
Format: Article
Language:English
Published: Copernicus Publications 2025-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/4665/2025/acp-25-4665-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850192299753996288
author N. M. Mahowald
L. Li
J. Vira
M. Prank
D. S. Hamilton
H. Matsui
R. L. Miller
P. L. Lu
P. L. Lu
E. Akyuz
D. Meidan
P. Hess
H. Lihavainen
C. Wiedinmyer
J. Hand
M. G. Alaimo
C. Alves
A. Alastuey
P. Artaxo
A. Barreto
F. Barraza
S. Becagli
G. Calzolai
S. Chellam
Y. Chen
P. Chuang
D. D. Cohen
C. Colombi
E. Diapouli
G. Dongarra
K. Eleftheriadis
J. Engelbrecht
C. Galy-Lacaux
C. Gaston
D. Gomez
Y. González Ramos
Y. González Ramos
R. M. Harrison
C. Heyes
B. Herut
B. Herut
P. Hopke
P. Hopke
C. Hüglin
M. Kanakidou
M. Kanakidou
M. Kanakidou
Z. Kertesz
Z. Klimont
K. Kyllönen
F. Lambert
F. Lambert
X. Liu
R. Losno
F. Lucarelli
W. Maenhaut
B. Marticorena
R. V. Martin
N. Mihalopoulos
N. Mihalopoulos
Y. Morera-Gómez
A. Paytan
J. Prospero
S. Rodríguez
S. Rodríguez
P. Smichowski
D. Varrica
B. Walsh
C. L. Weagle
X. Zhao
author_facet N. M. Mahowald
L. Li
J. Vira
M. Prank
D. S. Hamilton
H. Matsui
R. L. Miller
P. L. Lu
P. L. Lu
E. Akyuz
D. Meidan
P. Hess
H. Lihavainen
C. Wiedinmyer
J. Hand
M. G. Alaimo
C. Alves
A. Alastuey
P. Artaxo
A. Barreto
F. Barraza
S. Becagli
G. Calzolai
S. Chellam
Y. Chen
P. Chuang
D. D. Cohen
C. Colombi
E. Diapouli
G. Dongarra
K. Eleftheriadis
J. Engelbrecht
C. Galy-Lacaux
C. Gaston
D. Gomez
Y. González Ramos
Y. González Ramos
R. M. Harrison
C. Heyes
B. Herut
B. Herut
P. Hopke
P. Hopke
C. Hüglin
M. Kanakidou
M. Kanakidou
M. Kanakidou
Z. Kertesz
Z. Klimont
K. Kyllönen
F. Lambert
F. Lambert
X. Liu
R. Losno
F. Lucarelli
W. Maenhaut
B. Marticorena
R. V. Martin
N. Mihalopoulos
N. Mihalopoulos
Y. Morera-Gómez
A. Paytan
J. Prospero
S. Rodríguez
S. Rodríguez
P. Smichowski
D. Varrica
B. Walsh
C. L. Weagle
X. Zhao
author_sort N. M. Mahowald
collection DOAJ
description <p>Aerosol particles are an important part of the Earth climate system, and their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land<span id="page4667"/> and ocean. High particulate matter concentrations at the surface represent an important public health hazard. There are substantial data sets describing aerosol particles in the literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new compilation of PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> surface observations, including measurements of aerosol composition, focusing on the spatial variability across different observational stations. Climate modelers are constantly looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements, taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a method for comparing the data sets to outputs from global climate models that are the basis for projections of future climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land fraction does not have sufficient observations of surface concentrations – and, especially, particle composition – to characterize and understand the current distribution of particles. Climate models without ammonium nitrate aerosols omit <span class="inline-formula">∼</span> 10 % of the globally averaged surface concentration of aerosol particles in both PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions, climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in short-lived climate forcers.</p>
format Article
id doaj-art-8e415b9921804500aa0c316e962f4a2e
institution OA Journals
issn 1680-7316
1680-7324
language English
publishDate 2025-05-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-8e415b9921804500aa0c316e962f4a2e2025-08-20T02:14:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-05-01254665470210.5194/acp-25-4665-2025AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol compositionN. M. Mahowald0L. Li1J. Vira2M. Prank3D. S. Hamilton4H. Matsui5R. L. Miller6P. L. Lu7P. L. Lu8E. Akyuz9D. Meidan10P. Hess11H. Lihavainen12C. Wiedinmyer13J. Hand14M. G. Alaimo15C. Alves16A. Alastuey17P. Artaxo18A. Barreto19F. Barraza20S. Becagli21G. Calzolai22S. Chellam23Y. Chen24P. Chuang25D. D. Cohen26C. Colombi27E. Diapouli28G. Dongarra29K. Eleftheriadis30J. Engelbrecht31C. Galy-Lacaux32C. Gaston33D. Gomez34Y. González Ramos35Y. González Ramos36R. M. Harrison37C. Heyes38B. Herut39B. Herut40P. Hopke41P. Hopke42C. Hüglin43M. Kanakidou44M. Kanakidou45M. Kanakidou46Z. Kertesz47Z. Klimont48K. Kyllönen49F. Lambert50F. Lambert51X. Liu52R. Losno53F. Lucarelli54W. Maenhaut55B. Marticorena56R. V. Martin57N. Mihalopoulos58N. Mihalopoulos59Y. Morera-Gómez60A. Paytan61J. Prospero62S. Rodríguez63S. Rodríguez64P. Smichowski65D. Varrica66B. Walsh67C. L. Weagle68X. Zhao69Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USADepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USAClimate Research Programme, Finnish Meteorological Institute, Helsinki, FinlandClimate Research Programme, Finnish Meteorological Institute, Helsinki, FinlandDepartment of Marine, Earth and Atmospheric Sciences, North Carolina State, Raleigh, NC, USAGraduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, JapanNational Aeronautics and Space Administration, Goddard Institute for Space Studies, Columbia University, New York, NY 10025, USADepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USAEarth and Climate Section, Nicholas School of the Environment, Duke University, Durham, NC 27708, USAEurasia Institute of Earth Sciences, Istanbul Technical University, 34467 Istanbul, TürkiyeDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USADepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USASIOS Knowledge Centre, Postboks 156, 9171 Longyearbyen, NorwayCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USACooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USADip. Scienze della Terra e del Mare, University of Palermo, Palermo, ItalyCentre for Environmental and Marine Studies (CESAM), Department of Environment, University of Aveiro, 3810-193, Aveiro, PortugalEnvironmental Geochemistry and Atmospheric Research, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, SpainInstituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, BrazilIzaña Atmospheric Research Center (IARC), Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, SpainSoil, air and water science, Saw Science, Invercargill, New ZealandDepartment of Physics and Astronomy, Universita di Firenze and INFN-Firenze, 50019 Sesto Fiorentino, ItalyDepartment of Physics and Astronomy, Universita di Firenze and INFN-Firenze, 50019 Sesto Fiorentino, ItalyDepartment of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USAShanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, ChinaEarth & Planetary Sciences Department, Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USACentre for Accelerator Science, Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, AustraliaEnvironmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milan, ItalyEnvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate impact Lab, INRaSTES, N.C.S.R. Demokritos, 15341 Ag. Paraskevi, Attiki, GreeceDip. Scienze della Terra e del Mare, University of Palermo, Palermo, ItalyEnvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate impact Lab, INRaSTES, N.C.S.R. Demokritos, 15341 Ag. Paraskevi, Attiki, GreeceDivision of Atmospheric Sciences, Desert Research Institute (IRD), 2215 Raggio Parkway, Reno, Nevada 89512-1095, USALaboratoire d Aerologie, Universite de Toulouse, CNRS, Observatoire Midi Pyrenees, Toulouse, FranceRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USAComision Nacional de Energia Atomica, Gerencia Química, Av. Gral Paz 1499, B1650KNA, San Martin, Buenos Aires, ArgentinaIzaña Atmospheric Research Center (IARC), Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, SpainScientific Department, CIMEL, Paris, FranceSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UKEnergy, Climate and Environment Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, AustriaNational Institute of Oceanography, Israel Oceanographic & Limnological Research, Tel Shikmona, Haifa, 31080, IsraelSchool of Marine Sciences, University of Haifa, Haifa, 3103301, IsraelInstitute for a Sustainable Environment, Clarkson University, Potsdam, NY, USADepartment of Public Health Sciences and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USAAir Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (EMPA), 8600 Duebendorf, SwitzerlandEnvironmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Heraklion, GreeceCenter of Studies of Air quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GreeceExcellence Chair, Institute of Environmental Physics, University of Bremen, Bremen, GermanyLaboratory for Heritage Sciences, HUN-REN Institute for Nuclear Research (ATOMKI), Debrecen, HungaryEnergy, Climate and Environment Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, AustriaClimate Research Programme, Finnish Meteorological Institute, Helsinki, FinlandGeography Institute, Pontificia Universidad Catolica de Chile, Santiago, 7820436, ChileCenter for Climate and Resilience Research, Santiago, ChileDepartment of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USAInstitut de Physique du Globe de Paris, Universite de Paris, Paris, FranceDepartment of Physics and Astronomy, Universita di Firenze and INFN-Firenze, 50019 Sesto Fiorentino, ItalyDepartment of Chemistry, Ghent University, Gent, BelgiumLaboratoire Interuniversitaire des Systemes Atmospheriques (LISA), Universités Paris Est-Paris Diderot-Paris 7, UMR CNRS 7583, Créteil, FranceEnergy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USAEnvironmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Heraklion, GreeceInstitute for Environmental Research and Sustainable Development, National Observatory of Athens, Penteli, GreeceInstituto de Biodiversidad y Medioambiente BIOMA, Universidad de Navarra, Irunlarrea 1,31008, Pamplona, SpainEarth and Planetary Science, University of California, Santa Cruz, CA, USARosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USAIzaña Atmospheric Research Center (IARC), Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, SpainConsejo Superior de Investigaciones Científicas, IPNA CSIC, Tenerife, Canary Islands, SpainComision Nacional de Energia Atomica, Gerencia Química, Av. Gral Paz 1499, B1650KNA, San Martin, Buenos Aires, ArgentinaDip. Scienze della Terra e del Mare, University of Palermo, Palermo, ItalyEnergy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USAEnergy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USADepartment of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA<p>Aerosol particles are an important part of the Earth climate system, and their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land<span id="page4667"/> and ocean. High particulate matter concentrations at the surface represent an important public health hazard. There are substantial data sets describing aerosol particles in the literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new compilation of PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> surface observations, including measurements of aerosol composition, focusing on the spatial variability across different observational stations. Climate modelers are constantly looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements, taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a method for comparing the data sets to outputs from global climate models that are the basis for projections of future climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land fraction does not have sufficient observations of surface concentrations – and, especially, particle composition – to characterize and understand the current distribution of particles. Climate models without ammonium nitrate aerosols omit <span class="inline-formula">∼</span> 10 % of the globally averaged surface concentration of aerosol particles in both PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions, climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in short-lived climate forcers.</p>https://acp.copernicus.org/articles/25/4665/2025/acp-25-4665-2025.pdf
spellingShingle N. M. Mahowald
L. Li
J. Vira
M. Prank
D. S. Hamilton
H. Matsui
R. L. Miller
P. L. Lu
P. L. Lu
E. Akyuz
D. Meidan
P. Hess
H. Lihavainen
C. Wiedinmyer
J. Hand
M. G. Alaimo
C. Alves
A. Alastuey
P. Artaxo
A. Barreto
F. Barraza
S. Becagli
G. Calzolai
S. Chellam
Y. Chen
P. Chuang
D. D. Cohen
C. Colombi
E. Diapouli
G. Dongarra
K. Eleftheriadis
J. Engelbrecht
C. Galy-Lacaux
C. Gaston
D. Gomez
Y. González Ramos
Y. González Ramos
R. M. Harrison
C. Heyes
B. Herut
B. Herut
P. Hopke
P. Hopke
C. Hüglin
M. Kanakidou
M. Kanakidou
M. Kanakidou
Z. Kertesz
Z. Klimont
K. Kyllönen
F. Lambert
F. Lambert
X. Liu
R. Losno
F. Lucarelli
W. Maenhaut
B. Marticorena
R. V. Martin
N. Mihalopoulos
N. Mihalopoulos
Y. Morera-Gómez
A. Paytan
J. Prospero
S. Rodríguez
S. Rodríguez
P. Smichowski
D. Varrica
B. Walsh
C. L. Weagle
X. Zhao
AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
Atmospheric Chemistry and Physics
title AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
title_full AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
title_fullStr AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
title_full_unstemmed AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
title_short AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
title_sort aero map a data compilation and modeling approach to understand spatial variability in fine and coarse mode aerosol composition
url https://acp.copernicus.org/articles/25/4665/2025/acp-25-4665-2025.pdf
work_keys_str_mv AT nmmahowald aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT lli aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT jvira aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT mprank aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT dshamilton aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT hmatsui aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT rlmiller aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT pllu aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT pllu aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT eakyuz aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT dmeidan aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT phess aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT hlihavainen aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT cwiedinmyer aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT jhand aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT mgalaimo aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT calves aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT aalastuey aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT partaxo aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT abarreto aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT fbarraza aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT sbecagli aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT gcalzolai aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT schellam aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ychen aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT pchuang aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ddcohen aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ccolombi aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ediapouli aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT gdongarra aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT keleftheriadis aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT jengelbrecht aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT cgalylacaux aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT cgaston aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT dgomez aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ygonzalezramos aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ygonzalezramos aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT rmharrison aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT cheyes aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT bherut aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT bherut aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT phopke aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT phopke aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT chuglin aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT mkanakidou aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT mkanakidou aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT mkanakidou aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT zkertesz aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT zklimont aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT kkyllonen aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT flambert aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT flambert aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT xliu aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT rlosno aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT flucarelli aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT wmaenhaut aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT bmarticorena aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT rvmartin aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT nmihalopoulos aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT nmihalopoulos aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT ymoreragomez aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT apaytan aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT jprospero aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT srodriguez aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT srodriguez aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT psmichowski aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT dvarrica aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT bwalsh aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT clweagle aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition
AT xzhao aeromapadatacompilationandmodelingapproachtounderstandspatialvariabilityinfineandcoarsemodeaerosolcomposition