Machine Learning with Voting Committee for Frost Prediction
A machine learning (ML)-based methodology for predicting frosts was applied to the southern and southeastern regions of Brazil, as well as to other countries including Uruguay, Paraguay, northern Argentina, and southeastern Bolivia. The machine learning model (using TensorFlow (TF)) was compared to...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Meteorology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2674-0494/4/1/6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A machine learning (ML)-based methodology for predicting frosts was applied to the southern and southeastern regions of Brazil, as well as to other countries including Uruguay, Paraguay, northern Argentina, and southeastern Bolivia. The machine learning model (using TensorFlow (TF)) was compared to the frost index (IG from the Portuguese: Índice de Geada) developed by the National Institute for Space Research (INPE, Brazil). The IG is estimated using meteorological variables from a regional weather numerical model (RWNM). After calculating the two indices using the ML model and the RWNM, a voting committee (VC) was trained to select between the computed outputs. The AdaBoostClassifier algorithm was employed to implement the voting committee. The study area was subdivided into three distinct subregions: R1 (outside Brazil), R2 (the south of Brazil), and R3 (southeastern Brazil). Two forecasting time scales were evaluated: 24 h and 72 h. The 24 h forecasts from both approaches (TF and RWNM) exhibited a similar performance in terms of the number of accurate predictions. However, in the region covering Uruguay and northern Argentina, the TensorFlow model demonstrated superior frost prediction accuracy. Additionally, the TensorFlow model outperformed the RWNM for the 72 h forecast horizon. |
|---|---|
| ISSN: | 2674-0494 |