A Multi-Faceted Approach to Trending Topic Attack Detection Using Semantic Similarity and Large-Scale Datasets
Twitter’s widespread popularity has made it a prime target for malicious actors exploiting trending hashtags to disseminate harmful content. This study marks the first systematic exploration of semantic consistency in tweets to detect trending topic attacks. Unlike previous approaches, we...
Saved in:
Main Authors: | Insaf Kraidia, Afifa Ghenai, Samir Brahim Belhaouari |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10857330/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
News Topic Detection Based on Capsule Semantic Graph
by: Shuang Yang, et al.
Published: (2022-06-01) -
SOSYAL MEDYA VE YEREL SEÇİMLER: AK PARTİ #gönülbelediyeciliği ETİKETİ ÜZERİNE BİR ANALİZ
by: Övünç Meriç Fermanoğlu
Published: (2020-01-01) -
Crossing The Border With Hashtags: Twitter's Bridging The Gezi Park And The Yellow Vest Movements
by: Seher Karataş, et al.
Published: (2024-06-01) -
Expecting the Unexpected: Predicting Panic Attacks From Mood, Twitter, and Apple Watch Data
by: Ellen W. McGinnis, et al.
Published: (2024-01-01) -
Twitter fait-il parler les territoires ? Retour d'expériences à partir des tweets autour de l’attentat du 14 juillet 2016 à Nice
by: Karine Emsellem, et al.
Published: (2022-06-01)