Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
Optimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow>...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Batteries |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-0105/11/3/87 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850090016667074560 |
|---|---|
| author | Olanrewaju M. Oyewola Emmanuel T. Idowu Morakinyo J. Labiran Michael C. Hatfield Mebougna L. Drabo |
| author_facet | Olanrewaju M. Oyewola Emmanuel T. Idowu Morakinyo J. Labiran Michael C. Hatfield Mebougna L. Drabo |
| author_sort | Olanrewaju M. Oyewola |
| collection | DOAJ |
| description | Optimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), while minimizing the pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>) in air-cooled thermal management systems (TMSs), is an indispensable target for researchers. The Z-type battery thermal management system’s (BTMS’s) structure is one of the widely investigated air-cooled TMSs. Several designs of air-cooled BTMSs are often associated with the drawback of a rise in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>, consequently resulting in an increase in pumping costs. In this study, the investigation of a Step-like plenum design was extended by exploring one and two outlets to determine possible decreases in the maximum battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), maximum battery temperature difference (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), and pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>). The computational fluid dynamics (CFD) method was employed to predict the performances of different designs. The designs combine Step-like plenum and two outlets, with the outlets located at different points on the BTMS. The results from the study revealed that using a one-outlet design, combined with a Step-like plenum design, reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.52 K when compared with that of the original Z-type system. For another design with two outlets and the same Step-like plenum design, a reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.45 K was achieved. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, the use of a two-outlet design and a Step-like plenum design achieved a reduction of 6.34 K. Considering the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> performance, the best- and poorest-performing designs with two outlets reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> by 5.91 Pa and 3.66 Pa, respectively, when compared with that of the original Z-type design. The performances of the designs in this study clearly show the potential of two-outlet designs in reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> in systems. This study, therefore, concludes that the operational cost of the Step-like plenum Z-type BTMS can be reduced through the careful positioning of the two-outlet section, which will promote the design and development of current and future electric vehicle (EV) technologies. |
| format | Article |
| id | doaj-art-8df693c9a73040cd99dd0004b40e763a |
| institution | DOAJ |
| issn | 2313-0105 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Batteries |
| spelling | doaj-art-8df693c9a73040cd99dd0004b40e763a2025-08-20T02:42:38ZengMDPI AGBatteries2313-01052025-02-011138710.3390/batteries11030087Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management SystemOlanrewaju M. Oyewola0Emmanuel T. Idowu1Morakinyo J. Labiran2Michael C. Hatfield3Mebougna L. Drabo4Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Electrical and Computer Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical & Civil Engineering and Construction Management, Alabama A&M University, Huntsville, AL 35811, USAOptimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), while minimizing the pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>) in air-cooled thermal management systems (TMSs), is an indispensable target for researchers. The Z-type battery thermal management system’s (BTMS’s) structure is one of the widely investigated air-cooled TMSs. Several designs of air-cooled BTMSs are often associated with the drawback of a rise in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>, consequently resulting in an increase in pumping costs. In this study, the investigation of a Step-like plenum design was extended by exploring one and two outlets to determine possible decreases in the maximum battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), maximum battery temperature difference (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), and pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>). The computational fluid dynamics (CFD) method was employed to predict the performances of different designs. The designs combine Step-like plenum and two outlets, with the outlets located at different points on the BTMS. The results from the study revealed that using a one-outlet design, combined with a Step-like plenum design, reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.52 K when compared with that of the original Z-type system. For another design with two outlets and the same Step-like plenum design, a reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.45 K was achieved. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, the use of a two-outlet design and a Step-like plenum design achieved a reduction of 6.34 K. Considering the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> performance, the best- and poorest-performing designs with two outlets reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> by 5.91 Pa and 3.66 Pa, respectively, when compared with that of the original Z-type design. The performances of the designs in this study clearly show the potential of two-outlet designs in reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> in systems. This study, therefore, concludes that the operational cost of the Step-like plenum Z-type BTMS can be reduced through the careful positioning of the two-outlet section, which will promote the design and development of current and future electric vehicle (EV) technologies.https://www.mdpi.com/2313-0105/11/3/87air outletstep numberpressure droptemperatureBTMS |
| spellingShingle | Olanrewaju M. Oyewola Emmanuel T. Idowu Morakinyo J. Labiran Michael C. Hatfield Mebougna L. Drabo Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System Batteries air outlet step number pressure drop temperature BTMS |
| title | Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System |
| title_full | Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System |
| title_fullStr | Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System |
| title_full_unstemmed | Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System |
| title_short | Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System |
| title_sort | air outlet and step number effects on a step like plenum battery s thermal management system |
| topic | air outlet step number pressure drop temperature BTMS |
| url | https://www.mdpi.com/2313-0105/11/3/87 |
| work_keys_str_mv | AT olanrewajumoyewola airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem AT emmanueltidowu airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem AT morakinyojlabiran airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem AT michaelchatfield airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem AT mebougnaldrabo airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem |