Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System

Optimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow>...

Full description

Saved in:
Bibliographic Details
Main Authors: Olanrewaju M. Oyewola, Emmanuel T. Idowu, Morakinyo J. Labiran, Michael C. Hatfield, Mebougna L. Drabo
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/11/3/87
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850090016667074560
author Olanrewaju M. Oyewola
Emmanuel T. Idowu
Morakinyo J. Labiran
Michael C. Hatfield
Mebougna L. Drabo
author_facet Olanrewaju M. Oyewola
Emmanuel T. Idowu
Morakinyo J. Labiran
Michael C. Hatfield
Mebougna L. Drabo
author_sort Olanrewaju M. Oyewola
collection DOAJ
description Optimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), while minimizing the pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>) in air-cooled thermal management systems (TMSs), is an indispensable target for researchers. The Z-type battery thermal management system’s (BTMS’s) structure is one of the widely investigated air-cooled TMSs. Several designs of air-cooled BTMSs are often associated with the drawback of a rise in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>, consequently resulting in an increase in pumping costs. In this study, the investigation of a Step-like plenum design was extended by exploring one and two outlets to determine possible decreases in the maximum battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), maximum battery temperature difference (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), and pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>). The computational fluid dynamics (CFD) method was employed to predict the performances of different designs. The designs combine Step-like plenum and two outlets, with the outlets located at different points on the BTMS. The results from the study revealed that using a one-outlet design, combined with a Step-like plenum design, reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.52 K when compared with that of the original Z-type system. For another design with two outlets and the same Step-like plenum design, a reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.45 K was achieved. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, the use of a two-outlet design and a Step-like plenum design achieved a reduction of 6.34 K. Considering the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> performance, the best- and poorest-performing designs with two outlets reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> by 5.91 Pa and 3.66 Pa, respectively, when compared with that of the original Z-type design. The performances of the designs in this study clearly show the potential of two-outlet designs in reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> in systems. This study, therefore, concludes that the operational cost of the Step-like plenum Z-type BTMS can be reduced through the careful positioning of the two-outlet section, which will promote the design and development of current and future electric vehicle (EV) technologies.
format Article
id doaj-art-8df693c9a73040cd99dd0004b40e763a
institution DOAJ
issn 2313-0105
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Batteries
spelling doaj-art-8df693c9a73040cd99dd0004b40e763a2025-08-20T02:42:38ZengMDPI AGBatteries2313-01052025-02-011138710.3390/batteries11030087Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management SystemOlanrewaju M. Oyewola0Emmanuel T. Idowu1Morakinyo J. Labiran2Michael C. Hatfield3Mebougna L. Drabo4Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Electrical and Computer Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Mechanical & Civil Engineering and Construction Management, Alabama A&M University, Huntsville, AL 35811, USAOptimizing the control of the battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), while minimizing the pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>) in air-cooled thermal management systems (TMSs), is an indispensable target for researchers. The Z-type battery thermal management system’s (BTMS’s) structure is one of the widely investigated air-cooled TMSs. Several designs of air-cooled BTMSs are often associated with the drawback of a rise in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>, consequently resulting in an increase in pumping costs. In this study, the investigation of a Step-like plenum design was extended by exploring one and two outlets to determine possible decreases in the maximum battery temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), maximum battery temperature difference (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>), and pressure drop (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula>). The computational fluid dynamics (CFD) method was employed to predict the performances of different designs. The designs combine Step-like plenum and two outlets, with the outlets located at different points on the BTMS. The results from the study revealed that using a one-outlet design, combined with a Step-like plenum design, reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.52 K when compared with that of the original Z-type system. For another design with two outlets and the same Step-like plenum design, a reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> by 3.45 K was achieved. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>∆</mo><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, the use of a two-outlet design and a Step-like plenum design achieved a reduction of 6.34 K. Considering the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> performance, the best- and poorest-performing designs with two outlets reduced <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> by 5.91 Pa and 3.66 Pa, respectively, when compared with that of the original Z-type design. The performances of the designs in this study clearly show the potential of two-outlet designs in reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><mi>P</mi></mrow></semantics></math></inline-formula> in systems. This study, therefore, concludes that the operational cost of the Step-like plenum Z-type BTMS can be reduced through the careful positioning of the two-outlet section, which will promote the design and development of current and future electric vehicle (EV) technologies.https://www.mdpi.com/2313-0105/11/3/87air outletstep numberpressure droptemperatureBTMS
spellingShingle Olanrewaju M. Oyewola
Emmanuel T. Idowu
Morakinyo J. Labiran
Michael C. Hatfield
Mebougna L. Drabo
Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
Batteries
air outlet
step number
pressure drop
temperature
BTMS
title Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
title_full Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
title_fullStr Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
title_full_unstemmed Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
title_short Air-Outlet and Step-Number Effects on a Step-like Plenum Battery’s Thermal Management System
title_sort air outlet and step number effects on a step like plenum battery s thermal management system
topic air outlet
step number
pressure drop
temperature
BTMS
url https://www.mdpi.com/2313-0105/11/3/87
work_keys_str_mv AT olanrewajumoyewola airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem
AT emmanueltidowu airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem
AT morakinyojlabiran airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem
AT michaelchatfield airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem
AT mebougnaldrabo airoutletandstepnumbereffectsonasteplikeplenumbatterysthermalmanagementsystem