Perfectness of the essential graph for modules over commutative rings

Let $R$ be a commutative ring and $M$ be an $R$-module. The essential graph of $M$, denoted by $EG(M)$ is a simple graph with vertex set $Z(M) \setminus\operatorname{Ann}(M)$ and two distinct vertices $x,y \in Z(M) \setminus \operatorname{Ann}(M)$ are adjacent if and only if $\operatorname{Ann}_M(xy...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatemeh Soheilnia, Shiroyeh Payrovi, Ali Behtoei
Format: Article
Language:English
Published: Amirkabir University of Technology 2025-02-01
Series:AUT Journal of Mathematics and Computing
Subjects:
Online Access:https://ajmc.aut.ac.ir/article_5327_0630d68c5c10927c46e609e527ddcb78.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858280540143616
author Fatemeh Soheilnia
Shiroyeh Payrovi
Ali Behtoei
author_facet Fatemeh Soheilnia
Shiroyeh Payrovi
Ali Behtoei
author_sort Fatemeh Soheilnia
collection DOAJ
description Let $R$ be a commutative ring and $M$ be an $R$-module. The essential graph of $M$, denoted by $EG(M)$ is a simple graph with vertex set $Z(M) \setminus\operatorname{Ann}(M)$ and two distinct vertices $x,y \in Z(M) \setminus \operatorname{Ann}(M)$ are adjacent if and only if $\operatorname{Ann}_M(xy)$ is an essential submodule of $M$. In this paper, we investigate the dominating set, the clique and the chromatic number and the metric dimension of the essential graph for Noetherian modules. Let $M$ be a Noetherian $R$-module such that ${}|{} {\rm MinAss}_R(M){}|{}=n\geq 2$ and let $EG(M)$ be a connected graph. We prove that $EG(M)$ is a weakly prefect, that is, $\omega(EG(M))=\chi(EG(M))$. Furthermore, it is shown that $\dim (EG(M))= {}|{} Z(M){}|{}-({}|{}\operatorname{Ann}(M){}|{}+2^n)$, whenever $r(\operatorname{Ann}(M) )\not=\operatorname{Ann}(M)$ and $\dim (EG(M))= {}|{} Z(M){}|{}-({}|{}\operatorname{Ann}(M){}|{}+2^n-2)$, whenever $r(\operatorname{Ann}(M) )=\operatorname{Ann}(M)$.
format Article
id doaj-art-8dc9d97d177044319a131b12e15cbfab
institution Kabale University
issn 2783-2449
2783-2287
language English
publishDate 2025-02-01
publisher Amirkabir University of Technology
record_format Article
series AUT Journal of Mathematics and Computing
spelling doaj-art-8dc9d97d177044319a131b12e15cbfab2025-02-11T12:37:04ZengAmirkabir University of TechnologyAUT Journal of Mathematics and Computing2783-24492783-22872025-02-016216317010.22060/ajmc.2023.22138.11365327Perfectness of the essential graph for modules over commutative ringsFatemeh Soheilnia0Shiroyeh Payrovi1Ali Behtoei2Department of Pure Mathematics, Faculty of Science, Imam Khomieini International University, Qazvin, IranDepartment of Pure Mathematics, Faculty of Science, Imam Khomieini International University, Qazvin, IranDepartment of Pure Mathematics, Faculty of Science, Imam Khomieini International University, Qazvin, IranLet $R$ be a commutative ring and $M$ be an $R$-module. The essential graph of $M$, denoted by $EG(M)$ is a simple graph with vertex set $Z(M) \setminus\operatorname{Ann}(M)$ and two distinct vertices $x,y \in Z(M) \setminus \operatorname{Ann}(M)$ are adjacent if and only if $\operatorname{Ann}_M(xy)$ is an essential submodule of $M$. In this paper, we investigate the dominating set, the clique and the chromatic number and the metric dimension of the essential graph for Noetherian modules. Let $M$ be a Noetherian $R$-module such that ${}|{} {\rm MinAss}_R(M){}|{}=n\geq 2$ and let $EG(M)$ be a connected graph. We prove that $EG(M)$ is a weakly prefect, that is, $\omega(EG(M))=\chi(EG(M))$. Furthermore, it is shown that $\dim (EG(M))= {}|{} Z(M){}|{}-({}|{}\operatorname{Ann}(M){}|{}+2^n)$, whenever $r(\operatorname{Ann}(M) )\not=\operatorname{Ann}(M)$ and $\dim (EG(M))= {}|{} Z(M){}|{}-({}|{}\operatorname{Ann}(M){}|{}+2^n-2)$, whenever $r(\operatorname{Ann}(M) )=\operatorname{Ann}(M)$.https://ajmc.aut.ac.ir/article_5327_0630d68c5c10927c46e609e527ddcb78.pdfessential graph‎ dominating set‎clique number‎ chromatic number‎‎metric dimension
spellingShingle Fatemeh Soheilnia
Shiroyeh Payrovi
Ali Behtoei
Perfectness of the essential graph for modules over commutative rings
AUT Journal of Mathematics and Computing
essential graph
‎ dominating set‎
clique number
‎ chromatic number‎
‎metric dimension
title Perfectness of the essential graph for modules over commutative rings
title_full Perfectness of the essential graph for modules over commutative rings
title_fullStr Perfectness of the essential graph for modules over commutative rings
title_full_unstemmed Perfectness of the essential graph for modules over commutative rings
title_short Perfectness of the essential graph for modules over commutative rings
title_sort perfectness of the essential graph for modules over commutative rings
topic essential graph
‎ dominating set‎
clique number
‎ chromatic number‎
‎metric dimension
url https://ajmc.aut.ac.ir/article_5327_0630d68c5c10927c46e609e527ddcb78.pdf
work_keys_str_mv AT fatemehsoheilnia perfectnessoftheessentialgraphformodulesovercommutativerings
AT shiroyehpayrovi perfectnessoftheessentialgraphformodulesovercommutativerings
AT alibehtoei perfectnessoftheessentialgraphformodulesovercommutativerings