An Efficient Sleepy Algorithm for Particle-Based Fluids
We present a novel Smoothed Particle Hydrodynamics (SPH) based algorithm for efficiently simulating compressible and weakly compressible particle fluids. Prior particle-based methods simulate all fluid particles; however, in many cases some particles appearing to be at rest can be safely ignored wit...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | International Journal of Computer Games Technology |
| Online Access: | http://dx.doi.org/10.1155/2014/806095 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a novel Smoothed Particle Hydrodynamics (SPH) based algorithm for efficiently simulating compressible and weakly compressible particle fluids. Prior particle-based methods simulate all fluid particles; however, in many cases some particles appearing to be at rest can be safely ignored without notably affecting the fluid flow behavior. To identify these particles, a novel sleepy strategy is introduced. By utilizing this strategy, only a portion of the fluid particles requires computational resources; thus an obvious performance gain can be achieved. In addition, in order to resolve unphysical clumping issue due to tensile instability in SPH based methods, a new artificial repulsive force is provided. We demonstrate that our approach can be easily integrated with existing SPH based methods to improve the efficiency without sacrificing visual quality. |
|---|---|
| ISSN: | 1687-7047 1687-7055 |