Dissipative Filter Design for Nonlinear Time-Varying-Delay Singular Systems against Deception Attacks
This paper applies a T-S fuzzy model to depict a class of nonlinear time-varying-delay singular systems and investigates the dissipative filtering problem for these systems under deception attacks. The measurement output is assumed to encounter random deception attacks during signal transmission, an...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/2260753 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper applies a T-S fuzzy model to depict a class of nonlinear time-varying-delay singular systems and investigates the dissipative filtering problem for these systems under deception attacks. The measurement output is assumed to encounter random deception attacks during signal transmission, and a Bernoulli distribution is used to describe this random phenomena. In this case, the filtering error system modeled by a stochastic singular T-S fuzzy system is established and stochastic admissibility for this kind of system is defined firstly. Then, by combining some integral inequalities and using the Lyapunov–Krasovskii functional approach, sufficient delay-dependent conditions are presented based on linear matrix inequality techniques, where the system of filtering error can be stochastically admissible and strictly ℚ,S,ℝ-dissipative against randomly occurring deception attacks. Moreover, parameters of the desired filter can be obtained via the solutions of the established conditions. The validity of our work is illustrated through a mostly used example of the nonlinear system. |
---|---|
ISSN: | 1099-0526 |