The multiscale self-similarity of the weighted human brain connectome.

Anatomical connectivity between different brain regions can be mapped to a network representation, the connectome, where the intensities of the links, the weights, influence resilience and functional processes. Yet, many features associated with these weights are not fully understood, particularly t...

Full description

Saved in:
Bibliographic Details
Main Authors: Laia Barjuan, Muhua Zheng, M Ángeles Serrano
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-04-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012848
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anatomical connectivity between different brain regions can be mapped to a network representation, the connectome, where the intensities of the links, the weights, influence resilience and functional processes. Yet, many features associated with these weights are not fully understood, particularly their multiscale organization. In this paper, we elucidate the architecture of weights, including weak ties, in multiscale human brain connectomes reconstructed from empirical data. Our findings reveal multiscale self-similarity, including the ordering of weak ties, in every individual connectome and group representative. This phenomenon is captured by a renormalization technique based on a geometric network model that replicates the observed structure of connectomes across all length scales, using the same connectivity law and weighting function for both weak and strong ties. The observed symmetry represents a signature of criticality in the weighted connectivity of the human brain and raises important questions for future research, such as the existence of symmetry breaking at some scale or whether it is preserved in cases of neurodegeneration or psychiatric disorder.
ISSN:1553-734X
1553-7358