BAT3 regulates Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis of macrophages.
HLA-B-associated transcript 3 (BAT3), also known as Scythe or BAG6, is a nuclear protein implicated in the control of apoptosis and natural killer (NK) cell-dendritic cell (DC) interaction. We demonstrate that BAT3 modulates the immune response by regulating the function of macrophages. BAT3 is rele...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2012-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040836&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | HLA-B-associated transcript 3 (BAT3), also known as Scythe or BAG6, is a nuclear protein implicated in the control of apoptosis and natural killer (NK) cell-dendritic cell (DC) interaction. We demonstrate that BAT3 modulates the immune response by regulating the function of macrophages. BAT3 is released by macrophages in vitro and it down-regulates nitric oxide and proinflammatory cytokines release in IFN-γ and LPS stimulated macrophages. Furthermore, Mycobacterium tuberculosis-derived protein ESAT-6 (Rv3875) induced transient increase in the expression and release of BAT3 in macrophages. We show that induction of apoptosis by ESAT-6 is dependent on the cleavage of BAT3 by caspase-3 and proteasomal degradation. Our results also indicate that BAT3 regulates ESAT-6-induced apoptosis by interacting with anti-apoptotic protein BCL-2. Taken together, the data suggest that BAT3 plays a role in the early immune response to M. tuberculosis infection and may be a key protein associated with the fate of antigen presenting cells during infection. |
|---|---|
| ISSN: | 1932-6203 |