Engineering 2D spin networks by on-surface encapsulation of azafullerene radicals in nanotemplates
Abstract We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (C59N•) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55521-2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (C59N•) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the C59N• and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. C59N•⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals. We find compelling evidence for electronic coupling between the guest C59N• and the host [10]CPP in supramolecular species. At the same time, [10]CPP effectively protects the radical state of encapsulated azafullerenes against dimerization and inhibits C59N• coupling to the Au substrate. Azafullerene encapsulation by nanohoops represents a viable realization of molecular spin protection while simultaneously demonstrating exceptional self-assembling properties by which large-scale 2D architectures of molecular spins can be realized. |
---|---|
ISSN: | 2041-1723 |