Curcumin-loaded polydopamine nanoparticles-based antioxidant scaffold promote spinal cord repair though dural-regulation of macrophage polarization

Severe spinal cord injury (SCI) disrupts neuronal circulation and results in irreversible motor function loss. Treating SCI is a major challenge due to the limited regenerative capacity of axons and the inflammatory environment that hinders recovery. Macrophages play a dual role in SCI, with their p...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianshui Mao, Liangliang Chen, Genying Zhuang, Zhiqiang Jin, Shoukun Wu, Mingshuai Ying, Lingchao Sheng, Jianwei Lv, Qiuchen Bi, Jingjia Ye
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006425004557
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Severe spinal cord injury (SCI) disrupts neuronal circulation and results in irreversible motor function loss. Treating SCI is a major challenge due to the limited regenerative capacity of axons and the inflammatory environment that hinders recovery. Macrophages play a dual role in SCI, with their polarization determining whether they exacerbate the injury or promote tissue repair. In this study, we developed a curcumin-loaded polydopamine nanoparticle antioxidant scaffold (cur-PDA@gel) as a novel therapeutic approach for SCI. This scaffold was designed to bidirectionally modulate macrophage polarization. The polydopamine-coated nanoparticles demonstrated strong antioxidant activity, effectively neutralizing reactive oxygen species (ROS) and reducing inflammation. Curcumin released from the scaffold promoted M2-type macrophage polarization while inhibiting M1-type polarization, thereby reshaping the inflammatory microenvironment at the injury site and facilitating axonal regeneration. Mechanistically, curcumin regulated macrophage polarization by suppressing the NF-κB signaling pathway and activating the JAK/STAT pathway, particularly in the context of cur-PDA@gel implantation. These findings underscore the potential of cur-PDA@gel as a promising therapeutic strategy for SCI repair by targeting macrophage polarization.
ISSN:2590-0064