Research into Robust Federated Learning Methods Driven by Heterogeneity Awareness

Federated learning (FL) has emerged as a prominent distributed machine learning paradigm that facilitates collaborative model training across multiple clients while ensuring data privacy. Despite its growing adoption in practical applications, performance degradation caused by data heterogeneity—com...

Full description

Saved in:
Bibliographic Details
Main Authors: Junhui Song, Zhangqi Zheng, Afei Li, Zhixin Xia, Yongshan Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/7843
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Federated learning (FL) has emerged as a prominent distributed machine learning paradigm that facilitates collaborative model training across multiple clients while ensuring data privacy. Despite its growing adoption in practical applications, performance degradation caused by data heterogeneity—commonly referred to as the non-independent and identically distributed (non-IID) nature of client data—remains a fundamental challenge. To mitigate this issue, a heterogeneity-aware and robust FL framework is proposed to enhance model generalization and stability under non-IID conditions. The proposed approach introduces two key innovations. First, a heterogeneity quantification mechanism is designed based on statistical feature distributions, enabling the effective measurement of inter-client data discrepancies. This metric is further employed to guide the model aggregation process through a heterogeneity-aware weighted strategy. Second, a multi-loss optimization scheme is formulated, integrating classification loss, heterogeneity loss, feature center alignment, and L2 regularization for improved robustness against distributional shifts during local training. Comprehensive experiments are conducted on four benchmark datasets, including CIFAR-10, SVHN, MNIST, and NotMNIST under Dirichlet-based heterogeneity settings (alpha = 0.1 and alpha = 0.5). The results demonstrate that the proposed method consistently outperforms baseline approaches such as FedAvg, FedProx, FedSAM, and FedMOON. Notably, an accuracy improvement of approximately 4.19% over FedSAM is observed on CIFAR-10 (alpha = 0.5), and a 1.82% gain over FedMOON on SVHN (alpha = 0.1), along with stable enhancements on MNIST and NotMNIST. Furthermore, ablation studies confirm the contribution and necessity of each component in addressing data heterogeneity.
ISSN:2076-3417