TiO<sub>2</sub>-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes

This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO<sub>2</sub>) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepare...

Full description

Saved in:
Bibliographic Details
Main Authors: Sushanta Lenka, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius, Jwo-Huei Jou
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/3/199
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO<sub>2</sub>) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO<sub>2</sub> belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO<sub>2</sub>. The nanocomposite hybrid layer enhances light emission efficiency due to its role in modifying surface roughness, promoting better film uniformity, and improving hole injection. The incorporation of TiO<sub>2</sub> nanobelts into PEDOT/PSS led to significant efficiency enhancements, yielding a 39% increase in PE<sub>max</sub>, a 37% improvement in CE<sub>max</sub>, and a remarkable 72% rise in EQE<sub>max</sub> compared to the undoped counterpart. This research provides insight into the potential of TiO<sub>2</sub> nanocomposites in advancing OLED technology for next-generation display and lighting applications.
ISSN:2079-4991