Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices

We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4)  -(1/2)[∑d|n,d≡1  (4){E2k(d)+E2k(d-1)}+22k∑d|n,d≡1  (2)E2k((d...

Full description

Saved in:
Bibliographic Details
Main Authors: Daeyeoul Kim, Abdelmejid Bayad, Joongsoo Park
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/289187
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849401554681987072
author Daeyeoul Kim
Abdelmejid Bayad
Joongsoo Park
author_facet Daeyeoul Kim
Abdelmejid Bayad
Joongsoo Park
author_sort Daeyeoul Kim
collection DOAJ
description We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4)  -(1/2)[∑d|n,d≡1  (4){E2k(d)+E2k(d-1)}+22k∑d|n,d≡1  (2)E2k((d+(-1)(d-1)/2)/2)], U2k(p,q)=22k-2[-((p+q)/2)E2k((p+q)/2+1)+((q-p)/2)E2k((q-p)/2)-E2k((p+1)/2)-E2k((q+1)/2)+E2k+1((p+q)/2 +1)-E2k+1((q-p)/2)], and F2k(n)=(1/2){σ2k+1†(n)-σ2k†(n)}. As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.
format Article
id doaj-art-8d1dcee0311f4d34aab9be8a88a5c2dc
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-8d1dcee0311f4d34aab9be8a88a5c2dc2025-08-20T03:37:44ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/289187289187Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even IndicesDaeyeoul Kim0Abdelmejid Bayad1Joongsoo Park2National Institute for Mathematical Sciences, Daejeon 305-811, Republic of KoreaDépartement de Mathématiques, Université d'Evry Val d'Essonne, FranceWoosuk University, Samlae, Wanju, Jeonbuk 565-701, Republic of KoreaWe study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4)  -(1/2)[∑d|n,d≡1  (4){E2k(d)+E2k(d-1)}+22k∑d|n,d≡1  (2)E2k((d+(-1)(d-1)/2)/2)], U2k(p,q)=22k-2[-((p+q)/2)E2k((p+q)/2+1)+((q-p)/2)E2k((q-p)/2)-E2k((p+1)/2)-E2k((q+1)/2)+E2k+1((p+q)/2 +1)-E2k+1((q-p)/2)], and F2k(n)=(1/2){σ2k+1†(n)-σ2k†(n)}. As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.http://dx.doi.org/10.1155/2014/289187
spellingShingle Daeyeoul Kim
Abdelmejid Bayad
Joongsoo Park
Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
Abstract and Applied Analysis
title Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
title_full Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
title_fullStr Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
title_full_unstemmed Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
title_short Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
title_sort euler polynomials and combinatoric convolution sums of divisor functions with even indices
url http://dx.doi.org/10.1155/2014/289187
work_keys_str_mv AT daeyeoulkim eulerpolynomialsandcombinatoricconvolutionsumsofdivisorfunctionswithevenindices
AT abdelmejidbayad eulerpolynomialsandcombinatoricconvolutionsumsofdivisorfunctionswithevenindices
AT joongsoopark eulerpolynomialsandcombinatoricconvolutionsumsofdivisorfunctionswithevenindices