L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)

In order to study inclusions of the type Lp(μ,X)⊂Lq(ν,Y), we introduce the notion of an L-correspondence. After proving some basic theorems, we give characterizations of some types of L-correspondences and offer a conjecture that is similar to an equimeasurability theorem.

Saved in:
Bibliographic Details
Main Author: C. Bryan Dawson
Format: Article
Language:English
Published: Wiley 1996-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171296000993
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556280934301696
author C. Bryan Dawson
author_facet C. Bryan Dawson
author_sort C. Bryan Dawson
collection DOAJ
description In order to study inclusions of the type Lp(μ,X)⊂Lq(ν,Y), we introduce the notion of an L-correspondence. After proving some basic theorems, we give characterizations of some types of L-correspondences and offer a conjecture that is similar to an equimeasurability theorem.
format Article
id doaj-art-8d1551032d4549feb9e627984305ca8a
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1996-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-8d1551032d4549feb9e627984305ca8a2025-02-03T05:45:53ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251996-01-0119472372610.1155/S0161171296000993L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)C. Bryan Dawson0Division of Mathematics and Computer Science, Emporia State University, Emporia, KS 66801, USAIn order to study inclusions of the type Lp(μ,X)⊂Lq(ν,Y), we introduce the notion of an L-correspondence. After proving some basic theorems, we give characterizations of some types of L-correspondences and offer a conjecture that is similar to an equimeasurability theorem.http://dx.doi.org/10.1155/S0161171296000993L-correspondenceinclusionLebesgue-Bochner spacesmeasurable point mappingequimeasurability.
spellingShingle C. Bryan Dawson
L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
International Journal of Mathematics and Mathematical Sciences
L-correspondence
inclusion
Lebesgue-Bochner spaces
measurable point mapping
equimeasurability.
title L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
title_full L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
title_fullStr L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
title_full_unstemmed L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
title_short L-correspondences: the inclusion Lp(μ,X)⊂Lq(ν,Y)
title_sort l correspondences the inclusion lp μ x ⊂lq ν y
topic L-correspondence
inclusion
Lebesgue-Bochner spaces
measurable point mapping
equimeasurability.
url http://dx.doi.org/10.1155/S0161171296000993
work_keys_str_mv AT cbryandawson lcorrespondencestheinclusionlpmxlqny