Moving mesh simulations of pitting corrosion

Damages due to pitting corrosion of metals cost industry billions of dollars per year and can put human lives at risk. The design and implementation of an adaptive moving mesh method is provided for a moving boundary problem related to pitting corrosion. The adaptive mesh is generated automatically...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu Naser Sarker, Ronald D. Haynes, Michael D. Robertson
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241682
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Damages due to pitting corrosion of metals cost industry billions of dollars per year and can put human lives at risk. The design and implementation of an adaptive moving mesh method is provided for a moving boundary problem related to pitting corrosion. The adaptive mesh is generated automatically by solving a mesh PDE coupled to the nonlinear potential problem. The moving mesh approach is shown to enable initial mesh generation, provide automatic mesh adjustment (or recovery) and is able to smoothly tackle changing pit geometry. Materials with varying crystallography are considered. Changing mesh topology due to the merging of pits is also handled. The evolution of the pit shape, the pit depth, and the pit width are computed and compared to existing results in the literature. Mesh quality results are also included.
ISSN:2473-6988