Near-future rocket launches could slow ozone recovery

Abstract Rocket emissions thin the stratospheric ozone layer. To understand if significant ozone losses could occur as the launch industry grows, we examine two scenarios. Our ‘ambitious’ scenario (2040 launches/year) yields a −0.29% depletion in annual-mean, near-global total column ozone in 2030....

Full description

Saved in:
Bibliographic Details
Main Authors: Laura E. Revell, Michele T. Bannister, Tyler F. M. Brown, Timofei Sukhodolov, Sandro Vattioni, John Dykema, David J. Frame, John Cater, Gabriel Chiodo, Eugene Rozanov
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:npj Climate and Atmospheric Science
Online Access:https://doi.org/10.1038/s41612-025-01098-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Rocket emissions thin the stratospheric ozone layer. To understand if significant ozone losses could occur as the launch industry grows, we examine two scenarios. Our ‘ambitious’ scenario (2040 launches/year) yields a −0.29% depletion in annual-mean, near-global total column ozone in 2030. Antarctic springtime ozone decreases by 3.9%. Our ‘conservative’ scenario (884 launches/year) yields −0.17% annual, near-global depletion; current licensing rates suggest this scenario may be exceeded before 2030. Ozone losses are driven by the chlorine produced from solid rocket motor propellant, and black carbon which is emitted from most propellants. The ozone layer is slowly healing from the effects of CFCs, yet global-mean ozone abundances are still 2% lower than measured prior to the onset of CFC-induced ozone depletion. Our results demonstrate that ongoing and frequent rocket launches could delay ozone recovery. Action is needed now to ensure that future growth of the launch industry and ozone protection are mutually sustainable.
ISSN:2397-3722