Comparative Study of Hydrodynamic Performance of Submerged Water Jet Propeller and Conventional Propeller Under Multiple Operating Conditions
As global shipping accelerates toward a green and low-carbon transformation, submerged water jet propulsion has emerged as a promising alternative to traditional propellers due to its high speed efficiency, noise reduction, and adaptability. This study establishes a high-fidelity CFD (computational...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Machines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1702/13/2/147 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As global shipping accelerates toward a green and low-carbon transformation, submerged water jet propulsion has emerged as a promising alternative to traditional propellers due to its high speed efficiency, noise reduction, and adaptability. This study establishes a high-fidelity CFD (computational fluid dynamics) model incorporating vehicle body wake characteristics, validated through open-water experiments. A comparative analysis reveals that the vehicle body wake improves propulsion efficiency by 4.66% for conventional propellers and 2.32% for submerged water jet systems in near-surface operations while exacerbating cavitation-induced efficiency losses by 1.7% and 1.0%, respectively. Notably, submerged water jet propulsion demonstrates superior performance under high-velocity conditions, achieving 5–12.27% higher efficiency than conventional propellers across both open-water and vehicle body wake-affected scenarios. These findings substantiate submerged water jet propulsion’s advantages in complex flow fields, offering critical insights for marine propulsion system optimization. |
|---|---|
| ISSN: | 2075-1702 |