Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine

Identifying hazardous karst collapse pillars (KCPs) is critical for ensuring safe coal mining operations. While previous studies have focused primarily on physical detection, the spatial clustering characteristics of KCPs have often been overlooked. This study proposes a spatial hotspot identificati...

Full description

Saved in:
Bibliographic Details
Main Authors: Junsheng Yan, Zaibin Liu, Hui Yang, Lin An, Wei Li, Tiantian Wang, Qian Xie, Chenguang Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-08-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2025.1593432/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849222573368279040
author Junsheng Yan
Junsheng Yan
Junsheng Yan
Zaibin Liu
Zaibin Liu
Zaibin Liu
Zaibin Liu
Hui Yang
Hui Yang
Hui Yang
Lin An
Lin An
Lin An
Wei Li
Tiantian Wang
Qian Xie
Qian Xie
Qian Xie
Chenguang Liu
Chenguang Liu
Chenguang Liu
Chenguang Liu
author_facet Junsheng Yan
Junsheng Yan
Junsheng Yan
Zaibin Liu
Zaibin Liu
Zaibin Liu
Zaibin Liu
Hui Yang
Hui Yang
Hui Yang
Lin An
Lin An
Lin An
Wei Li
Tiantian Wang
Qian Xie
Qian Xie
Qian Xie
Chenguang Liu
Chenguang Liu
Chenguang Liu
Chenguang Liu
author_sort Junsheng Yan
collection DOAJ
description Identifying hazardous karst collapse pillars (KCPs) is critical for ensuring safe coal mining operations. While previous studies have focused primarily on physical detection, the spatial clustering characteristics of KCPs have often been overlooked. This study proposes a spatial hotspot identification method based on Moran’s index and applies it to the Wangpo Coal Mine in Shanxi, China. The method integrates morphological feature analysis of KCPs with a combined weighting scheme using the Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM). A spatial distribution index (SDI) was constructed through geographic information system (GIS) overlay analysis and spatial coordinate calibration. Global Moran’s I (0.1110, p < 0.05) indicates a statistically significant positive spatial autocorrelation of KCP distribution. Local Moran’s I further reveals 11 spatially significant KCPs, including 5 high-high clusters. Geological interpretation shows that these high-risk KCPs are predominantly located near the intersections of faults and folds, highlighting the structural control on KCP formation. The proposed method provides a quantitative and spatially interpretable approach for KCP risk identification and has potential for application to other geohazards exhibiting spatial aggregation patterns.
format Article
id doaj-art-8c81464bd63a4246802187638765ea85
institution Kabale University
issn 2296-6463
language English
publishDate 2025-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Earth Science
spelling doaj-art-8c81464bd63a4246802187638765ea852025-08-26T04:13:07ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632025-08-011310.3389/feart.2025.15934321593432Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mineJunsheng Yan0Junsheng Yan1Junsheng Yan2Zaibin Liu3Zaibin Liu4Zaibin Liu5Zaibin Liu6Hui Yang7Hui Yang8Hui Yang9Lin An10Lin An11Lin An12Wei Li13Tiantian Wang14Qian Xie15Qian Xie16Qian Xie17Chenguang Liu18Chenguang Liu19Chenguang Liu20Chenguang Liu21Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaChina Coal Research Institute, Beijing, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaChina Coal Research Institute, Beijing, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaXi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an, ChinaXi’an CCTEG Transparent Geology Technology Co. Ltd., Xi’an, ChinaState Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Beijing, ChinaChina University of Mining and Technology, Xuzhou, ChinaIdentifying hazardous karst collapse pillars (KCPs) is critical for ensuring safe coal mining operations. While previous studies have focused primarily on physical detection, the spatial clustering characteristics of KCPs have often been overlooked. This study proposes a spatial hotspot identification method based on Moran’s index and applies it to the Wangpo Coal Mine in Shanxi, China. The method integrates morphological feature analysis of KCPs with a combined weighting scheme using the Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM). A spatial distribution index (SDI) was constructed through geographic information system (GIS) overlay analysis and spatial coordinate calibration. Global Moran’s I (0.1110, p < 0.05) indicates a statistically significant positive spatial autocorrelation of KCP distribution. Local Moran’s I further reveals 11 spatially significant KCPs, including 5 high-high clusters. Geological interpretation shows that these high-risk KCPs are predominantly located near the intersections of faults and folds, highlighting the structural control on KCP formation. The proposed method provides a quantitative and spatially interpretable approach for KCP risk identification and has potential for application to other geohazards exhibiting spatial aggregation patterns.https://www.frontiersin.org/articles/10.3389/feart.2025.1593432/fullmorphological characteristicsgeographic information systemcoordinate calibrationspatial distribution indexdevelopment patterns
spellingShingle Junsheng Yan
Junsheng Yan
Junsheng Yan
Zaibin Liu
Zaibin Liu
Zaibin Liu
Zaibin Liu
Hui Yang
Hui Yang
Hui Yang
Lin An
Lin An
Lin An
Wei Li
Tiantian Wang
Qian Xie
Qian Xie
Qian Xie
Chenguang Liu
Chenguang Liu
Chenguang Liu
Chenguang Liu
Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
Frontiers in Earth Science
morphological characteristics
geographic information system
coordinate calibration
spatial distribution index
development patterns
title Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
title_full Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
title_fullStr Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
title_full_unstemmed Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
title_short Identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with Moran’s index in coal mine
title_sort identifying hotspots and classifying the spatial distribution pattern of karst collapse pillars with moran s index in coal mine
topic morphological characteristics
geographic information system
coordinate calibration
spatial distribution index
development patterns
url https://www.frontiersin.org/articles/10.3389/feart.2025.1593432/full
work_keys_str_mv AT junshengyan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT junshengyan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT junshengyan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT zaibinliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT zaibinliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT zaibinliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT zaibinliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT huiyang identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT huiyang identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT huiyang identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT linan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT linan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT linan identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT weili identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT tiantianwang identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT qianxie identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT qianxie identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT qianxie identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT chenguangliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT chenguangliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT chenguangliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine
AT chenguangliu identifyinghotspotsandclassifyingthespatialdistributionpatternofkarstcollapsepillarswithmoransindexincoalmine