Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review

Abstract Background Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR predicti...

Full description

Saved in:
Bibliographic Details
Main Authors: Eriseld Krasniqi, Lorena Filomeno, Teresa Arcuri, Gianluigi Ferretti, Simona Gasparro, Alberto Fulvi, Arianna Roselli, Loretta D’Onofrio, Laura Pizzuti, Maddalena Barba, Marcello Maugeri-Saccà, Claudio Botti, Franco Graziano, Ilaria Puccica, Sonia Cappelli, Fabio Pelle, Flavia Cavicchi, Amedeo Villanucci, Ida Paris, Fabio Calabrò, Sandra Rea, Maurizio Costantini, Letizia Perracchio, Giuseppe Sanguineti, Silvia Takanen, Laura Marucci, Laura Greco, Rami Kayal, Luca Moscetti, Elisa Marchesini, Nicola Calonaci, Giovanni Blandino, Giulio Caravagna, Patrizia Vici
Format: Article
Language:English
Published: BMC 2025-06-01
Series:Biology Direct
Subjects:
Online Access:https://doi.org/10.1186/s13062-025-00661-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849472476332949504
author Eriseld Krasniqi
Lorena Filomeno
Teresa Arcuri
Gianluigi Ferretti
Simona Gasparro
Alberto Fulvi
Arianna Roselli
Loretta D’Onofrio
Laura Pizzuti
Maddalena Barba
Marcello Maugeri-Saccà
Claudio Botti
Franco Graziano
Ilaria Puccica
Sonia Cappelli
Fabio Pelle
Flavia Cavicchi
Amedeo Villanucci
Ida Paris
Fabio Calabrò
Sandra Rea
Maurizio Costantini
Letizia Perracchio
Giuseppe Sanguineti
Silvia Takanen
Laura Marucci
Laura Greco
Rami Kayal
Luca Moscetti
Elisa Marchesini
Nicola Calonaci
Giovanni Blandino
Giulio Caravagna
Patrizia Vici
author_facet Eriseld Krasniqi
Lorena Filomeno
Teresa Arcuri
Gianluigi Ferretti
Simona Gasparro
Alberto Fulvi
Arianna Roselli
Loretta D’Onofrio
Laura Pizzuti
Maddalena Barba
Marcello Maugeri-Saccà
Claudio Botti
Franco Graziano
Ilaria Puccica
Sonia Cappelli
Fabio Pelle
Flavia Cavicchi
Amedeo Villanucci
Ida Paris
Fabio Calabrò
Sandra Rea
Maurizio Costantini
Letizia Perracchio
Giuseppe Sanguineti
Silvia Takanen
Laura Marucci
Laura Greco
Rami Kayal
Luca Moscetti
Elisa Marchesini
Nicola Calonaci
Giovanni Blandino
Giulio Caravagna
Patrizia Vici
author_sort Eriseld Krasniqi
collection DOAJ
description Abstract Background Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR prediction accuracy. This systematic review synthesizes evidence on multimodal DL for pCR prediction and compares its performance against unimodal DL. Methods Following PRISMA, we searched PubMed, Embase, and Web of Science (January 2015–April 2025) for studies applying DL to predict pCR in BC patients receiving NAST, using data from radiology, digital pathology (DP), multi-omics, and/or clinical records, and reporting AUC. Data on study design, DL architectures, and performance (AUC) were extracted. A narrative synthesis was conducted due to heterogeneity. Results Fifty-one studies, mostly retrospective (90.2%, median cohort 281), were included. Magnetic resonance imaging and DP were common primary modalities. Multimodal approaches were used in 52.9% of studies, often combining imaging with clinical data. Convolutional neural networks were the dominant architecture (88.2%). Longitudinal imaging improved prediction over baseline-only (median AUC 0.91 vs. 0.82). Overall, the median AUC across studies was 0.88, with 35.3% achieving AUC ≥ 0.90. Multimodal models showed a modest but consistent improvement over unimodal approaches (median AUC 0.88 vs. 0.83). Omics and clinical text were rarely primary DL inputs. Conclusion DL models demonstrate promising accuracy for pCR prediction, especially when integrating multiple modalities and longitudinal imaging. However, significant methodological heterogeneity, reliance on retrospective data, and limited external validation hinder clinical translation. Future research should prioritize prospective validation, integration underutilized data (multi-omics, clinical), and explainable AI to advance DL predictors to the clinical setting.
format Article
id doaj-art-8c69fa7995384eab8d98b8ab82c0f397
institution Kabale University
issn 1745-6150
language English
publishDate 2025-06-01
publisher BMC
record_format Article
series Biology Direct
spelling doaj-art-8c69fa7995384eab8d98b8ab82c0f3972025-08-20T03:24:32ZengBMCBiology Direct1745-61502025-06-0120111910.1186/s13062-025-00661-8Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic reviewEriseld Krasniqi0Lorena Filomeno1Teresa Arcuri2Gianluigi Ferretti3Simona Gasparro4Alberto Fulvi5Arianna Roselli6Loretta D’Onofrio7Laura Pizzuti8Maddalena Barba9Marcello Maugeri-Saccà10Claudio Botti11Franco Graziano12Ilaria Puccica13Sonia Cappelli14Fabio Pelle15Flavia Cavicchi16Amedeo Villanucci17Ida Paris18Fabio Calabrò19Sandra Rea20Maurizio Costantini21Letizia Perracchio22Giuseppe Sanguineti23Silvia Takanen24Laura Marucci25Laura Greco26Rami Kayal27Luca Moscetti28Elisa Marchesini29Nicola Calonaci30Giovanni Blandino31Giulio Caravagna32Patrizia Vici33Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer InstitutePhase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer InstitutePhase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteClinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteBreast Surgery Department, IRCCS Regina Elena National Cancer InstituteDivision of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCSDivision of Medical Oncology 1, IRCCS Regina Elena National Cancer InstituteNuclear Medicine Unit, IRCCS Regina Elena National Cancer InstituteDepartment of Plastic and Reconstructive Surgery, IRCCS Regina Elena National Cancer InstituteDepartment of Pathology, IRCCS Regina Elena National Cancer InstituteDepartment of Radiation Oncology, IRCCS Regina Elena National Cancer InstituteDepartment of Radiation Oncology, IRCCS Regina Elena National Cancer InstituteDepartment of Radiation Oncology, IRCCS Regina Elena National Cancer InstituteRadiology Unit, IRCCS Regina Elena National Cancer InstituteRadiology Unit, IRCCS Regina Elena National Cancer InstituteOncology and Hemathology Department, Azienda Ospedaliero-Universitaria Policlinico Di ModenaHospital Pharmacy, IRCCS Regina Elena National Cancer InstituteDepartment of Mathematics, Informatics and Geosciences, University of TriesteTranslational Oncology Research Unit, IRCCS Regina Elena National Cancer InstituteDepartment of Mathematics, Informatics and Geosciences, University of TriestePhase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer InstituteAbstract Background Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR prediction accuracy. This systematic review synthesizes evidence on multimodal DL for pCR prediction and compares its performance against unimodal DL. Methods Following PRISMA, we searched PubMed, Embase, and Web of Science (January 2015–April 2025) for studies applying DL to predict pCR in BC patients receiving NAST, using data from radiology, digital pathology (DP), multi-omics, and/or clinical records, and reporting AUC. Data on study design, DL architectures, and performance (AUC) were extracted. A narrative synthesis was conducted due to heterogeneity. Results Fifty-one studies, mostly retrospective (90.2%, median cohort 281), were included. Magnetic resonance imaging and DP were common primary modalities. Multimodal approaches were used in 52.9% of studies, often combining imaging with clinical data. Convolutional neural networks were the dominant architecture (88.2%). Longitudinal imaging improved prediction over baseline-only (median AUC 0.91 vs. 0.82). Overall, the median AUC across studies was 0.88, with 35.3% achieving AUC ≥ 0.90. Multimodal models showed a modest but consistent improvement over unimodal approaches (median AUC 0.88 vs. 0.83). Omics and clinical text were rarely primary DL inputs. Conclusion DL models demonstrate promising accuracy for pCR prediction, especially when integrating multiple modalities and longitudinal imaging. However, significant methodological heterogeneity, reliance on retrospective data, and limited external validation hinder clinical translation. Future research should prioritize prospective validation, integration underutilized data (multi-omics, clinical), and explainable AI to advance DL predictors to the clinical setting.https://doi.org/10.1186/s13062-025-00661-8Breast cancerNeoadjuvant treatmentDeep learningMultimodal prediction
spellingShingle Eriseld Krasniqi
Lorena Filomeno
Teresa Arcuri
Gianluigi Ferretti
Simona Gasparro
Alberto Fulvi
Arianna Roselli
Loretta D’Onofrio
Laura Pizzuti
Maddalena Barba
Marcello Maugeri-Saccà
Claudio Botti
Franco Graziano
Ilaria Puccica
Sonia Cappelli
Fabio Pelle
Flavia Cavicchi
Amedeo Villanucci
Ida Paris
Fabio Calabrò
Sandra Rea
Maurizio Costantini
Letizia Perracchio
Giuseppe Sanguineti
Silvia Takanen
Laura Marucci
Laura Greco
Rami Kayal
Luca Moscetti
Elisa Marchesini
Nicola Calonaci
Giovanni Blandino
Giulio Caravagna
Patrizia Vici
Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
Biology Direct
Breast cancer
Neoadjuvant treatment
Deep learning
Multimodal prediction
title Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
title_full Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
title_fullStr Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
title_full_unstemmed Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
title_short Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
title_sort multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer a systematic review
topic Breast cancer
Neoadjuvant treatment
Deep learning
Multimodal prediction
url https://doi.org/10.1186/s13062-025-00661-8
work_keys_str_mv AT eriseldkrasniqi multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT lorenafilomeno multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT teresaarcuri multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT gianluigiferretti multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT simonagasparro multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT albertofulvi multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT ariannaroselli multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT lorettadonofrio multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT laurapizzuti multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT maddalenabarba multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT marcellomaugerisacca multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT claudiobotti multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT francograziano multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT ilariapuccica multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT soniacappelli multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT fabiopelle multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT flaviacavicchi multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT amedeovillanucci multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT idaparis multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT fabiocalabro multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT sandrarea multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT mauriziocostantini multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT letiziaperracchio multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT giuseppesanguineti multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT silviatakanen multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT lauramarucci multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT lauragreco multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT ramikayal multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT lucamoscetti multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT elisamarchesini multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT nicolacalonaci multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT giovanniblandino multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT giuliocaravagna multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview
AT patriziavici multimodaldeeplearningforpredictingneoadjuvanttreatmentoutcomesinbreastcancerasystematicreview