Finite-rank intermediate Hankel operators on the Bergman space

Let L2=L2(D,r dr dθ/π) be the Lebesgue space on the open unit disc and let La2=L2∩ℋol(D) be the Bergman space. Let P be the orthogonal projection of L2 onto La2 and let Q be the orthogonal projection onto L¯a,02={g∈L2;g¯∈La2,   g(0)=0}. Then I−P≥Q. The big Hankel operator and the small Hankel opera...

Full description

Saved in:
Bibliographic Details
Main Authors: Takahiko Nakazi, Tomoko Osawa
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201001971
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559911201931264
author Takahiko Nakazi
Tomoko Osawa
author_facet Takahiko Nakazi
Tomoko Osawa
author_sort Takahiko Nakazi
collection DOAJ
description Let L2=L2(D,r dr dθ/π) be the Lebesgue space on the open unit disc and let La2=L2∩ℋol(D) be the Bergman space. Let P be the orthogonal projection of L2 onto La2 and let Q be the orthogonal projection onto L¯a,02={g∈L2;g¯∈La2,   g(0)=0}. Then I−P≥Q. The big Hankel operator and the small Hankel operator on La2 are defined as: for ϕ in L∞, Hϕbig(f)=(I−P)(ϕf) and Hϕsmall(f)=Q(ϕf)(f∈La2). In this paper, the finite-rank intermediate Hankel operators between Hϕbig and Hϕsmall are studied. We are working on the more general space, that is, the weighted Bergman space.
format Article
id doaj-art-8c6895d83f494abaa6d639af148edbd3
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-8c6895d83f494abaa6d639af148edbd32025-02-03T01:29:00ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-01251193110.1155/S0161171201001971Finite-rank intermediate Hankel operators on the Bergman spaceTakahiko Nakazi0Tomoko Osawa1Department of Mathematics, Hokkaido University, Sapporo 060, JapanMathematical and Scienti?c Subjects, Asahikawa National College of Technology, Asahikawa 071, JapanLet L2=L2(D,r dr dθ/π) be the Lebesgue space on the open unit disc and let La2=L2∩ℋol(D) be the Bergman space. Let P be the orthogonal projection of L2 onto La2 and let Q be the orthogonal projection onto L¯a,02={g∈L2;g¯∈La2,   g(0)=0}. Then I−P≥Q. The big Hankel operator and the small Hankel operator on La2 are defined as: for ϕ in L∞, Hϕbig(f)=(I−P)(ϕf) and Hϕsmall(f)=Q(ϕf)(f∈La2). In this paper, the finite-rank intermediate Hankel operators between Hϕbig and Hϕsmall are studied. We are working on the more general space, that is, the weighted Bergman space.http://dx.doi.org/10.1155/S0161171201001971
spellingShingle Takahiko Nakazi
Tomoko Osawa
Finite-rank intermediate Hankel operators on the Bergman space
International Journal of Mathematics and Mathematical Sciences
title Finite-rank intermediate Hankel operators on the Bergman space
title_full Finite-rank intermediate Hankel operators on the Bergman space
title_fullStr Finite-rank intermediate Hankel operators on the Bergman space
title_full_unstemmed Finite-rank intermediate Hankel operators on the Bergman space
title_short Finite-rank intermediate Hankel operators on the Bergman space
title_sort finite rank intermediate hankel operators on the bergman space
url http://dx.doi.org/10.1155/S0161171201001971
work_keys_str_mv AT takahikonakazi finiterankintermediatehankeloperatorsonthebergmanspace
AT tomokoosawa finiterankintermediatehankeloperatorsonthebergmanspace