Semisupervised Soft Mumford-Shah Model for MRI Brain Image Segmentation

One challenge of unsupervised MRI brain image segmentation is the central gray matter due to the faint contrast with respect to the surrounding white matter. In this paper, the necessity of supervised image segmentation is addressed, and a soft Mumford-Shah model is introduced. Then, a framework of...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong-Yuan Wang, Fuhua Chen
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2016/8508329
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One challenge of unsupervised MRI brain image segmentation is the central gray matter due to the faint contrast with respect to the surrounding white matter. In this paper, the necessity of supervised image segmentation is addressed, and a soft Mumford-Shah model is introduced. Then, a framework of semisupervised image segmentation based on soft Mumford-Shah model is developed. The main contribution of this paper lies in the development a framework of a semisupervised soft image segmentation using both Bayesian principle and the principle of soft image segmentation. The developed framework classifies pixels using a semisupervised and interactive way, where the class of a pixel is not only determined by its features but also determined by its distance from those known regions. The developed semisupervised soft segmentation model turns out to be an extension of the unsupervised soft Mumford-Shah model. The framework is then applied to MRI brain image segmentation. Experimental results demonstrate that the developed framework outperforms the state-of-the-art methods of unsupervised segmentation. The new method can produce segmentation as precise as required.
ISSN:1687-9724
1687-9732