Design, optimization, and ADMET evaluation of S11a-0000168202: A promising LIMK1 inhibitor for gastric cancer treatment.
This study focuses on the development and optimization of S11a-0000168202, a novel LIMK1 inhibitor with potential therapeutic applications in gastric cancer. Through scaffold hopping and structural modification of HIT100844099, S11a-0000168202 demonstrated enhanced binding stability and stronger int...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0323699 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study focuses on the development and optimization of S11a-0000168202, a novel LIMK1 inhibitor with potential therapeutic applications in gastric cancer. Through scaffold hopping and structural modification of HIT100844099, S11a-0000168202 demonstrated enhanced binding stability and stronger interactions with key LIMK1 residues, including GLU-414, ILE-416, and HIS-464. Molecular dynamics simulations and MMGBSA analyses confirmed the compound's stability, while ADMET evaluation revealed favorable properties such as moderate lipophilicity, good human intestinal absorption, and low P-glycoprotein inhibition. Despite the promising computational results, the lack of experimental validation remains a limitation. Future studies should focus on in vitro and in vivo testing to confirm S11a-0000168202's efficacy, pharmacokinetics, and safety. This compound holds significant potential as a therapeutic agent for LIMK1-targeted gastric cancer treatment. |
|---|---|
| ISSN: | 1932-6203 |