Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases

Abstract Background Only half of individuals with suspected rare diseases receive a genetic diagnosis following genomic testing. A genetic diagnosis allows access to appropriate care, restores reproductive confidence and reduces the number of potentially unnecessary interventions. A major barrier is...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniella H. Hock, Nikeisha J. Caruana, Liana N. Semcesen, Nicole J. Lake, Luke E. Formosa, Sumudu S. C. Amarasekera, Tegan Stait, Simone Tregoning, Leah E. Frajman, Adam M. Bournazos, David R. L. Robinson, Megan Ball, Boris Reljic, Bryony Ryder, Mathew J. Wallis, Anand Vasudevan, Cara Beck, Heidi Peters, Joy Lee, Natalie B. Tan, Mary-Louise Freckmann, MitoMDT Diagnostic Network for Genomics and Omics, Vasiliki Karlaftis, Chantal Attard, Paul Monagle, Amanda Samarasinghe, Rosie Brown, Weimin Bi, Monkol Lek, Robert McFarland, Robert W. Taylor, Michael T. Ryan, Sandra T. Cooper, Zornitza Stark, John Christodoulou, Alison G. Compton, David R. Thorburn, David A. Stroud
Format: Article
Language:English
Published: BMC 2025-05-01
Series:Genome Medicine
Subjects:
Online Access:https://doi.org/10.1186/s13073-025-01467-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850231209957785600
author Daniella H. Hock
Nikeisha J. Caruana
Liana N. Semcesen
Nicole J. Lake
Luke E. Formosa
Sumudu S. C. Amarasekera
Tegan Stait
Simone Tregoning
Leah E. Frajman
Adam M. Bournazos
David R. L. Robinson
Megan Ball
Boris Reljic
Bryony Ryder
Mathew J. Wallis
Anand Vasudevan
Cara Beck
Heidi Peters
Joy Lee
Natalie B. Tan
Mary-Louise Freckmann
MitoMDT Diagnostic Network for Genomics and Omics
Vasiliki Karlaftis
Chantal Attard
Paul Monagle
Amanda Samarasinghe
Rosie Brown
Weimin Bi
Monkol Lek
Robert McFarland
Robert W. Taylor
Michael T. Ryan
Sandra T. Cooper
Zornitza Stark
John Christodoulou
Alison G. Compton
David R. Thorburn
David A. Stroud
author_facet Daniella H. Hock
Nikeisha J. Caruana
Liana N. Semcesen
Nicole J. Lake
Luke E. Formosa
Sumudu S. C. Amarasekera
Tegan Stait
Simone Tregoning
Leah E. Frajman
Adam M. Bournazos
David R. L. Robinson
Megan Ball
Boris Reljic
Bryony Ryder
Mathew J. Wallis
Anand Vasudevan
Cara Beck
Heidi Peters
Joy Lee
Natalie B. Tan
Mary-Louise Freckmann
MitoMDT Diagnostic Network for Genomics and Omics
Vasiliki Karlaftis
Chantal Attard
Paul Monagle
Amanda Samarasinghe
Rosie Brown
Weimin Bi
Monkol Lek
Robert McFarland
Robert W. Taylor
Michael T. Ryan
Sandra T. Cooper
Zornitza Stark
John Christodoulou
Alison G. Compton
David R. Thorburn
David A. Stroud
author_sort Daniella H. Hock
collection DOAJ
description Abstract Background Only half of individuals with suspected rare diseases receive a genetic diagnosis following genomic testing. A genetic diagnosis allows access to appropriate care, restores reproductive confidence and reduces the number of potentially unnecessary interventions. A major barrier is the lack of disease agnostic functional tests suitable for implementation in routine diagnostics that can provide evidence supporting pathogenicity of novel variants, especially those refractory to RNA sequencing. Methods Focusing on mitochondrial disease, we describe an untargeted mass-spectrometry based proteomics pipeline that can quantify proteins encoded by > 50% of Mendelian disease genes and > 80% of known mitochondrial disease genes in clinically relevant sample types, including peripheral blood mononuclear cells (PBMCs). In total we profiled > 90 individuals including undiagnosed individuals suspected of mitochondrial disease and a supporting cohort of disease controls harbouring pathogenic variants in nuclear and mitochondrial genes. Proteomics data were benchmarked against pathology accredited respiratory chain enzymology to assess the performance of proteomics as a functional test. Proteomics testing was subsequently applied to individuals with suspected mitochondrial disease, including a critically ill infant with a view toward rapid interpretation of variants identified in ultra-rapid genome sequencing. Results Proteomics testing provided evidence to support variant pathogenicity in 83% of individuals in a cohort with confirmed mitochondrial disease, outperforming clinical respiratory chain enzymology. Freely available bioinformatic tools and criteria developed for this study ( https://rdms.app/ ) allow mitochondrial dysfunction to be identified in proteomics data with high confidence. Application of proteomics to undiagnosed individuals led to 6 additional diagnoses, including a mitochondrial phenocopy disorder, highlighting the disease agnostic nature of proteomics. Use of PBMCs as a sample type allowed rapid return of proteomics data supporting pathogenicity of novel variants identified through ultra-rapid genome sequencing in as little as 54 h. Conclusions This study provides a framework to support the integration of a single untargeted proteomics test into routine diagnostic practice for the diagnosis of mitochondrial and potentially other rare genetic disorders in clinically actionable timelines, offering a paradigm shift for the functional validation of genetic variants.
format Article
id doaj-art-8c1ed0db5f6c44d3b1ebcbfaec8f06fe
institution OA Journals
issn 1756-994X
language English
publishDate 2025-05-01
publisher BMC
record_format Article
series Genome Medicine
spelling doaj-art-8c1ed0db5f6c44d3b1ebcbfaec8f06fe2025-08-20T02:03:36ZengBMCGenome Medicine1756-994X2025-05-0117112410.1186/s13073-025-01467-zUntargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseasesDaniella H. Hock0Nikeisha J. Caruana1Liana N. Semcesen2Nicole J. Lake3Luke E. Formosa4Sumudu S. C. Amarasekera5Tegan Stait6Simone Tregoning7Leah E. Frajman8Adam M. Bournazos9David R. L. Robinson10Megan Ball11Boris Reljic12Bryony Ryder13Mathew J. Wallis14Anand Vasudevan15Cara Beck16Heidi Peters17Joy Lee18Natalie B. Tan19Mary-Louise Freckmann20MitoMDT Diagnostic Network for Genomics and OmicsVasiliki Karlaftis21Chantal Attard22Paul Monagle23Amanda Samarasinghe24Rosie Brown25Weimin Bi26Monkol Lek27Robert McFarland28Robert W. Taylor29Michael T. Ryan30Sandra T. Cooper31Zornitza Stark32John Christodoulou33Alison G. Compton34David R. Thorburn35David A. Stroud36Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneDepartment of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneDepartment of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneDepartment of Genetics, Yale School of MedicineDepartment of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash UniversityMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteKids Neuroscience Centre, The Children’s Hospital at WestmeadDepartment of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneMurdoch Children’s Research InstituteDepartment of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbournePaediatric and Adult National Metabolic Service, Te Toka Tumai, Te Whatu Ora Health New ZealandTasmanian Clinical Genetics Service, Tasmanian Health ServiceRoyal Women’s HospitalVictorian Clinical Genetics Services, Murdoch Children’s Research InstituteDepartment of Paediatrics, University of MelbourneVictorian Clinical Genetics Services, Murdoch Children’s Research InstituteMurdoch Children’s Research InstituteDepartment of Clinical Genetics, The Canberra HospitalMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteDepartment of Molecular and Human Genetics, Baylor College of MedicineDepartment of Genetics, Yale School of MedicineMitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityMitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityDepartment of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash UniversityKids Neuroscience Centre, The Children’s Hospital at WestmeadMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteMurdoch Children’s Research InstituteDepartment of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneAbstract Background Only half of individuals with suspected rare diseases receive a genetic diagnosis following genomic testing. A genetic diagnosis allows access to appropriate care, restores reproductive confidence and reduces the number of potentially unnecessary interventions. A major barrier is the lack of disease agnostic functional tests suitable for implementation in routine diagnostics that can provide evidence supporting pathogenicity of novel variants, especially those refractory to RNA sequencing. Methods Focusing on mitochondrial disease, we describe an untargeted mass-spectrometry based proteomics pipeline that can quantify proteins encoded by > 50% of Mendelian disease genes and > 80% of known mitochondrial disease genes in clinically relevant sample types, including peripheral blood mononuclear cells (PBMCs). In total we profiled > 90 individuals including undiagnosed individuals suspected of mitochondrial disease and a supporting cohort of disease controls harbouring pathogenic variants in nuclear and mitochondrial genes. Proteomics data were benchmarked against pathology accredited respiratory chain enzymology to assess the performance of proteomics as a functional test. Proteomics testing was subsequently applied to individuals with suspected mitochondrial disease, including a critically ill infant with a view toward rapid interpretation of variants identified in ultra-rapid genome sequencing. Results Proteomics testing provided evidence to support variant pathogenicity in 83% of individuals in a cohort with confirmed mitochondrial disease, outperforming clinical respiratory chain enzymology. Freely available bioinformatic tools and criteria developed for this study ( https://rdms.app/ ) allow mitochondrial dysfunction to be identified in proteomics data with high confidence. Application of proteomics to undiagnosed individuals led to 6 additional diagnoses, including a mitochondrial phenocopy disorder, highlighting the disease agnostic nature of proteomics. Use of PBMCs as a sample type allowed rapid return of proteomics data supporting pathogenicity of novel variants identified through ultra-rapid genome sequencing in as little as 54 h. Conclusions This study provides a framework to support the integration of a single untargeted proteomics test into routine diagnostic practice for the diagnosis of mitochondrial and potentially other rare genetic disorders in clinically actionable timelines, offering a paradigm shift for the functional validation of genetic variants.https://doi.org/10.1186/s13073-025-01467-zProteomicsGenetic diagnosticsMendelian diseaseUltra-rapid genome sequencingVariant prioritisation
spellingShingle Daniella H. Hock
Nikeisha J. Caruana
Liana N. Semcesen
Nicole J. Lake
Luke E. Formosa
Sumudu S. C. Amarasekera
Tegan Stait
Simone Tregoning
Leah E. Frajman
Adam M. Bournazos
David R. L. Robinson
Megan Ball
Boris Reljic
Bryony Ryder
Mathew J. Wallis
Anand Vasudevan
Cara Beck
Heidi Peters
Joy Lee
Natalie B. Tan
Mary-Louise Freckmann
MitoMDT Diagnostic Network for Genomics and Omics
Vasiliki Karlaftis
Chantal Attard
Paul Monagle
Amanda Samarasinghe
Rosie Brown
Weimin Bi
Monkol Lek
Robert McFarland
Robert W. Taylor
Michael T. Ryan
Sandra T. Cooper
Zornitza Stark
John Christodoulou
Alison G. Compton
David R. Thorburn
David A. Stroud
Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
Genome Medicine
Proteomics
Genetic diagnostics
Mendelian disease
Ultra-rapid genome sequencing
Variant prioritisation
title Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
title_full Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
title_fullStr Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
title_full_unstemmed Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
title_short Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases
title_sort untargeted proteomics enables ultra rapid variant prioritisation in mitochondrial and other rare diseases
topic Proteomics
Genetic diagnostics
Mendelian disease
Ultra-rapid genome sequencing
Variant prioritisation
url https://doi.org/10.1186/s13073-025-01467-z
work_keys_str_mv AT daniellahhock untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT nikeishajcaruana untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT lianansemcesen untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT nicolejlake untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT lukeeformosa untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT sumuduscamarasekera untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT teganstait untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT simonetregoning untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT leahefrajman untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT adammbournazos untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT davidrlrobinson untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT meganball untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT borisreljic untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT bryonyryder untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT mathewjwallis untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT anandvasudevan untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT carabeck untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT heidipeters untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT joylee untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT nataliebtan untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT marylouisefreckmann untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT mitomdtdiagnosticnetworkforgenomicsandomics untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT vasilikikarlaftis untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT chantalattard untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT paulmonagle untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT amandasamarasinghe untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT rosiebrown untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT weiminbi untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT monkollek untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT robertmcfarland untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT robertwtaylor untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT michaeltryan untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT sandratcooper untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT zornitzastark untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT johnchristodoulou untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT alisongcompton untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT davidrthorburn untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases
AT davidastroud untargetedproteomicsenablesultrarapidvariantprioritisationinmitochondrialandotherrarediseases