Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
<p>Agricultural practices are a major source of ammonia (<span class="inline-formula">NH<sub>3</sub></span>) in the atmosphere, which has implications for air quality, climate, and ecosystems. Due to the rising demand for food and feed production, ammonia<s...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-02-01
|
| Series: | Atmospheric Chemistry and Physics |
| Online Access: | https://acp.copernicus.org/articles/25/2017/2025/acp-25-2017-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850197155248078848 |
|---|---|
| author | M. Beaudor M. Beaudor D. Hauglustaine J. Lathière M. Van Damme M. Van Damme L. Clarisse N. Vuichard |
| author_facet | M. Beaudor M. Beaudor D. Hauglustaine J. Lathière M. Van Damme M. Van Damme L. Clarisse N. Vuichard |
| author_sort | M. Beaudor |
| collection | DOAJ |
| description | <p>Agricultural practices are a major source of ammonia (<span class="inline-formula">NH<sub>3</sub></span>) in the atmosphere, which has implications for air quality, climate, and ecosystems. Due to the rising demand for food and feed production, ammonia<span id="page2018"/> emissions are expected to increase significantly by 2100 and would therefore impact atmospheric composition such as nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00001.svg" width="25pt" height="16pt" src="acp-25-2017-2025-ie00001.png"/></svg:svg></span></span>) or sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6060a0eb6022af681aa55d19b3180df9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00002.svg" width="29pt" height="17pt" src="acp-25-2017-2025-ie00002.png"/></svg:svg></span></span>) particles and affect biodiversity from enhanced deposition. Chemistry–climate models which integrate the key atmospheric physicochemical processes with the ammonia cycle represent a useful tool to investigate present-day and also future reduced nitrogen pathways and their impact on the global scale. Ammonia sources are, however, challenging to quantify because of their dependencies on environmental variables and agricultural practices and represent a crucial input for chemistry–climate models. In this study, we use the chemistry–climate model LMDZ–INCA (Laboratoire de Météorologie Dynamique–INteraction with Chemistry and Aerosols) with agricultural and natural soil ammonia emissions from a global land surface model ORCHIDEE (ORganising Carbon and Hydrology In Dynamic Ecosystems), together with the integrated module CAMEO (Calculation of AMmonia Emissions in ORCHIDEE), for the present-day and 2090–2100 period under two divergent Shared Socioeconomic Pathways (SSP5-8.5 and SSP4-3.4). Future agricultural emissions under the most increased level (SSP4-3.4) have been further exploited to evaluate the impact of enhanced ammonia emissions combined with future contrasting aerosol precursor emissions (SSP1-2.6 – low emissions; SSP3-7.0 – regionally contrasted emissions). We demonstrate that the CAMEO emission set enhances the spatial and temporal variability in the atmospheric ammonia in regions such as Africa, Latin America, and the US in comparison to the static reference inventory (Community Emissions Data System; CEDS) when assessed against satellite and surface network observations. The CAMEO simulation indicates higher ammonia emissions in Africa relative to other studies, which is corroborated by increased current levels of reduced nitrogen deposition (<span class="inline-formula">NH<sub><i>x</i></sub></span>), a finding that aligns with observations in west Africa. Future CAMEO emissions lead to an overall increase in the global <span class="inline-formula">NH<sub>3</sub></span> burden ranging from 59 <span class="inline-formula">%</span> to 235 <span class="inline-formula">%</span>, while the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00003.svg" width="25pt" height="16pt" src="acp-25-2017-2025-ie00003.png"/></svg:svg></span></span> burden increases by 57 <span class="inline-formula">%</span>–114 <span class="inline-formula">%</span>, depending on the scenario, even when global <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions decrease. When considering the most divergent scenarios (SSP5-8.5 and SSP4-3.4) for agricultural ammonia emissions, the direct radiative forcing resulting from secondary inorganic aerosol changes ranges from <span class="inline-formula">−</span>114 to <span class="inline-formula">−</span>160 <span class="inline-formula">mW m<sup>−2</sup></span>. By combining a high level of <span class="inline-formula">NH<sub>3</sub></span> emissions with decreased or contrasted future sulfate and nitrate emissions, the nitrate radiative effect can either overcompensate (net total sulfate and nitrate effect of <span class="inline-formula">−</span>200 <span class="inline-formula">mW m<sup>−2</sup></span>) or be offset by the sulfate effect (net total sulfate and nitrate effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">180</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">mW</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8077a7ec204171760d118275ba53fc24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00004.svg" width="69pt" height="13pt" src="acp-25-2017-2025-ie00004.png"/></svg:svg></span></span>). We also show that future oxidation of <span class="inline-formula">NH<sub>3</sub></span> could lead to an increase in <span class="inline-formula">N<sub>2</sub>O</span> atmospheric sources from 0.43 to 2.10 <span class="inline-formula">Tg N<sub>2</sub>O yr<sup>−1</sup></span> compared to the present-day levels, representing 18 <span class="inline-formula">%</span> of the future <span class="inline-formula">N<sub>2</sub>O</span> anthropogenic emissions. Our results suggest that accounting for nitrate aerosol precursor emission levels but also for the ammonia oxidation pathway in future studies is particularly important to understand how ammonia will affect climate, air quality, and nitrogen deposition.</p> |
| format | Article |
| id | doaj-art-8c0d51ea23a140d489ffb0ddf87dca31 |
| institution | OA Journals |
| issn | 1680-7316 1680-7324 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | Atmospheric Chemistry and Physics |
| spelling | doaj-art-8c0d51ea23a140d489ffb0ddf87dca312025-08-20T02:13:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-02-01252017204610.5194/acp-25-2017-2025Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climateM. Beaudor0M. Beaudor1D. Hauglustaine2J. Lathière3M. Van Damme4M. Van Damme5L. Clarisse6N. Vuichard7Laboratoire des Sciences du Climat et de l'Environnement (LSCE) CEA-CNRS-UVSQ, Gif-sur-Yvette, Francenow at: High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USALaboratoire des Sciences du Climat et de l'Environnement (LSCE) CEA-CNRS-UVSQ, Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE) CEA-CNRS-UVSQ, Gif-sur-Yvette, FranceSpectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles (ULB), Brussels, BelgiumRoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumSpectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles (ULB), Brussels, BelgiumLaboratoire des Sciences du Climat et de l'Environnement (LSCE) CEA-CNRS-UVSQ, Gif-sur-Yvette, France<p>Agricultural practices are a major source of ammonia (<span class="inline-formula">NH<sub>3</sub></span>) in the atmosphere, which has implications for air quality, climate, and ecosystems. Due to the rising demand for food and feed production, ammonia<span id="page2018"/> emissions are expected to increase significantly by 2100 and would therefore impact atmospheric composition such as nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00001.svg" width="25pt" height="16pt" src="acp-25-2017-2025-ie00001.png"/></svg:svg></span></span>) or sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6060a0eb6022af681aa55d19b3180df9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00002.svg" width="29pt" height="17pt" src="acp-25-2017-2025-ie00002.png"/></svg:svg></span></span>) particles and affect biodiversity from enhanced deposition. Chemistry–climate models which integrate the key atmospheric physicochemical processes with the ammonia cycle represent a useful tool to investigate present-day and also future reduced nitrogen pathways and their impact on the global scale. Ammonia sources are, however, challenging to quantify because of their dependencies on environmental variables and agricultural practices and represent a crucial input for chemistry–climate models. In this study, we use the chemistry–climate model LMDZ–INCA (Laboratoire de Météorologie Dynamique–INteraction with Chemistry and Aerosols) with agricultural and natural soil ammonia emissions from a global land surface model ORCHIDEE (ORganising Carbon and Hydrology In Dynamic Ecosystems), together with the integrated module CAMEO (Calculation of AMmonia Emissions in ORCHIDEE), for the present-day and 2090–2100 period under two divergent Shared Socioeconomic Pathways (SSP5-8.5 and SSP4-3.4). Future agricultural emissions under the most increased level (SSP4-3.4) have been further exploited to evaluate the impact of enhanced ammonia emissions combined with future contrasting aerosol precursor emissions (SSP1-2.6 – low emissions; SSP3-7.0 – regionally contrasted emissions). We demonstrate that the CAMEO emission set enhances the spatial and temporal variability in the atmospheric ammonia in regions such as Africa, Latin America, and the US in comparison to the static reference inventory (Community Emissions Data System; CEDS) when assessed against satellite and surface network observations. The CAMEO simulation indicates higher ammonia emissions in Africa relative to other studies, which is corroborated by increased current levels of reduced nitrogen deposition (<span class="inline-formula">NH<sub><i>x</i></sub></span>), a finding that aligns with observations in west Africa. Future CAMEO emissions lead to an overall increase in the global <span class="inline-formula">NH<sub>3</sub></span> burden ranging from 59 <span class="inline-formula">%</span> to 235 <span class="inline-formula">%</span>, while the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00003.svg" width="25pt" height="16pt" src="acp-25-2017-2025-ie00003.png"/></svg:svg></span></span> burden increases by 57 <span class="inline-formula">%</span>–114 <span class="inline-formula">%</span>, depending on the scenario, even when global <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions decrease. When considering the most divergent scenarios (SSP5-8.5 and SSP4-3.4) for agricultural ammonia emissions, the direct radiative forcing resulting from secondary inorganic aerosol changes ranges from <span class="inline-formula">−</span>114 to <span class="inline-formula">−</span>160 <span class="inline-formula">mW m<sup>−2</sup></span>. By combining a high level of <span class="inline-formula">NH<sub>3</sub></span> emissions with decreased or contrasted future sulfate and nitrate emissions, the nitrate radiative effect can either overcompensate (net total sulfate and nitrate effect of <span class="inline-formula">−</span>200 <span class="inline-formula">mW m<sup>−2</sup></span>) or be offset by the sulfate effect (net total sulfate and nitrate effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">180</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">mW</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8077a7ec204171760d118275ba53fc24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-2017-2025-ie00004.svg" width="69pt" height="13pt" src="acp-25-2017-2025-ie00004.png"/></svg:svg></span></span>). We also show that future oxidation of <span class="inline-formula">NH<sub>3</sub></span> could lead to an increase in <span class="inline-formula">N<sub>2</sub>O</span> atmospheric sources from 0.43 to 2.10 <span class="inline-formula">Tg N<sub>2</sub>O yr<sup>−1</sup></span> compared to the present-day levels, representing 18 <span class="inline-formula">%</span> of the future <span class="inline-formula">N<sub>2</sub>O</span> anthropogenic emissions. Our results suggest that accounting for nitrate aerosol precursor emission levels but also for the ammonia oxidation pathway in future studies is particularly important to understand how ammonia will affect climate, air quality, and nitrogen deposition.</p>https://acp.copernicus.org/articles/25/2017/2025/acp-25-2017-2025.pdf |
| spellingShingle | M. Beaudor M. Beaudor D. Hauglustaine J. Lathière M. Van Damme M. Van Damme L. Clarisse N. Vuichard Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate Atmospheric Chemistry and Physics |
| title | Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| title_full | Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| title_fullStr | Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| title_full_unstemmed | Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| title_short | Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| title_sort | evaluating present day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate |
| url | https://acp.copernicus.org/articles/25/2017/2025/acp-25-2017-2025.pdf |
| work_keys_str_mv | AT mbeaudor evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT mbeaudor evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT dhauglustaine evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT jlathiere evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT mvandamme evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT mvandamme evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT lclarisse evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate AT nvuichard evaluatingpresentdayandfutureimpactsofagriculturalammoniaemissionsonatmosphericchemistryandclimate |