Analysis of stochastic pantograph differential equations with generalized derivative of arbitrary order
In this paper, we mainly study the existence of analytical solutions of stochastic pantograph differential equations. The standard Picard’s iteration method is used to obtain the theory.
Saved in:
Main Authors: | Devaraj Vivek, Elsayed M. Elsayed, Kuppusamy Kanagarajan |
---|---|
Format: | Article |
Language: | English |
Published: |
EJAAM
2022-12-01
|
Series: | E-Journal of Analysis and Applied Mathematics |
Subjects: | |
Online Access: | https://ejaam.org/articles/2022/10.2478-ejaam-2022-0003.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Fractional B-spline collocation method for the numerical solution of the fractional pantograph differential equations
by: S. Bivani, et al.
Published: (2025-02-01) -
Iterative methods for solving fractional differential equations using non-polynomial splines
by: Faraidun K. Hamasalh, et al.
Published: (2024-12-01) -
On some analogues of periodic problems for Laplace equation with an oblique derivative under boundary conditions
by: Batirkhan Turmetov, et al.
Published: (2020-06-01) -
An analytical investigation of nonlinear time-fractional Schrödinger and coupled Schrödinger–KdV equations
by: Yogeshwari F. Patel, et al.
Published: (2025-03-01) -
Existence and uniqueness of solutions for nonlinear impulsive differential equations with three-point boundary conditions
by: Mısır J. Mardanov,, et al.
Published: (2019-07-01)