AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
Abstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% a...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-025-01478-5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823861574707707904 |
---|---|
author | Zhi-Xin Huang Andrea M. Alexandre Alessandro Pedicelli Xuying He Quanlong Hong Yongkun Li Ping Chen Qiankun Cai Aldobrando Broccolini Luca Scarcia Serena Abruzzese Carlo Cirelli Mauro Bergui Andrea Romi Erwah Kalsoum Giulia Frauenfelder Grzegorz Meder Simona Scalise Maria Porzia Ganimede Luigi Bellini Bruno Del Sette Francesco Arba Susanna Sammali Andrea Salcuni Sergio Lucio Vinci Giacomo Cester Luisa Roveri Xianjun Huang Wen Sun |
author_facet | Zhi-Xin Huang Andrea M. Alexandre Alessandro Pedicelli Xuying He Quanlong Hong Yongkun Li Ping Chen Qiankun Cai Aldobrando Broccolini Luca Scarcia Serena Abruzzese Carlo Cirelli Mauro Bergui Andrea Romi Erwah Kalsoum Giulia Frauenfelder Grzegorz Meder Simona Scalise Maria Porzia Ganimede Luigi Bellini Bruno Del Sette Francesco Arba Susanna Sammali Andrea Salcuni Sergio Lucio Vinci Giacomo Cester Luisa Roveri Xianjun Huang Wen Sun |
author_sort | Zhi-Xin Huang |
collection | DOAJ |
description | Abstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation. |
format | Article |
id | doaj-art-8b6a4748ba8743829eaeaf3dc38807a3 |
institution | Kabale University |
issn | 2398-6352 |
language | English |
publishDate | 2025-02-01 |
publisher | Nature Portfolio |
record_format | Article |
series | npj Digital Medicine |
spelling | doaj-art-8b6a4748ba8743829eaeaf3dc38807a32025-02-09T12:55:43ZengNature Portfolionpj Digital Medicine2398-63522025-02-01811910.1038/s41746-025-01478-5AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillationZhi-Xin Huang0Andrea M. Alexandre1Alessandro Pedicelli2Xuying He3Quanlong Hong4Yongkun Li5Ping Chen6Qiankun Cai7Aldobrando Broccolini8Luca Scarcia9Serena Abruzzese10Carlo Cirelli11Mauro Bergui12Andrea Romi13Erwah Kalsoum14Giulia Frauenfelder15Grzegorz Meder16Simona Scalise17Maria Porzia Ganimede18Luigi Bellini19Bruno Del Sette20Francesco Arba21Susanna Sammali22Andrea Salcuni23Sergio Lucio Vinci24Giacomo Cester25Luisa Roveri26Xianjun Huang27Wen Sun28NeuroMedical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, GuangzhouUOC Radiologia e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCSUOC Radiologia e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCSNeuroMedical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, GuangzhouDepartment of Neurology, Quanzhou First Hospital, QuanzhouDepartment of Neurology, Shengli Clinical Medical College of Fujian Medical University, FuzhouDepartment of Neurology, The First Hospital of Putian City, PutianDepartment of Neurology, Second Affiliated Hospital of Fujian Medical University, QuanzhouNeurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCSNeuroradiology Unit, Henri Mondor HospitalCatholic University School of MedicineDepartment of Human Neurosciences, Interventional Neuroradiology, University Hospital Policlinico Umberto IDepartment of Neuroscience, Neuroradiological Unit, University of Turin, Azienda Ospedaliera Città della Salute e della Scienza HospitalNeuroradiology Unit, IRCCS Policlinico San MatteoNeuroradiology Unit, Henri Mondor HospitalNeuroradiology Unit, AOU S Giovanni di Dio e Ruggi di AragonaDepartment of Interventional Radiology, Jan Biziel University Hospital No. 2, Ujejskiego 75 Street, 85-168UOC Neurologia-Stroke Unit, Ospedale Vito FazziInterventional Radiology Unit, “SS Annunziata” HospitalDepartment of Biomedicine and Prevention, University hospital of Rome “Tor Vergata”Neuroradiology Unit, IRCCS Ospedale Policlinico San MartinoStroke Unit, AOU Careggi University HospitalNEUROFARBA Department, University of FlorenceDepartment of Radiological Sciences, Oncology and Pathology, Sapienza University of RomeNeuroradiology Unit, Biomedical Sciences and of Morphologic and Functional Images, AOU Policlinico G. MartinoNeuroradiology Unit, Policlinico Universitario di PadovaNeurology Unit, stroke unit, IRCCS San Raffaele University HospitalDepartment of Neurology, Yijishan Hospital, Wannan Medical CollegeDepartment of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaAbstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation.https://doi.org/10.1038/s41746-025-01478-5 |
spellingShingle | Zhi-Xin Huang Andrea M. Alexandre Alessandro Pedicelli Xuying He Quanlong Hong Yongkun Li Ping Chen Qiankun Cai Aldobrando Broccolini Luca Scarcia Serena Abruzzese Carlo Cirelli Mauro Bergui Andrea Romi Erwah Kalsoum Giulia Frauenfelder Grzegorz Meder Simona Scalise Maria Porzia Ganimede Luigi Bellini Bruno Del Sette Francesco Arba Susanna Sammali Andrea Salcuni Sergio Lucio Vinci Giacomo Cester Luisa Roveri Xianjun Huang Wen Sun AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation npj Digital Medicine |
title | AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
title_full | AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
title_fullStr | AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
title_full_unstemmed | AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
title_short | AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
title_sort | ai prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation |
url | https://doi.org/10.1038/s41746-025-01478-5 |
work_keys_str_mv | AT zhixinhuang aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT andreamalexandre aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT alessandropedicelli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT xuyinghe aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT quanlonghong aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT yongkunli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT pingchen aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT qiankuncai aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT aldobrandobroccolini aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT lucascarcia aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT serenaabruzzese aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT carlocirelli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT maurobergui aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT andrearomi aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT erwahkalsoum aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT giuliafrauenfelder aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT grzegorzmeder aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT simonascalise aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT mariaporziaganimede aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT luigibellini aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT brunodelsette aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT francescoarba aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT susannasammali aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT andreasalcuni aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT sergioluciovinci aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT giacomocester aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT luisaroveri aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT xianjunhuang aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation AT wensun aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation |