AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation

Abstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% a...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhi-Xin Huang, Andrea M. Alexandre, Alessandro Pedicelli, Xuying He, Quanlong Hong, Yongkun Li, Ping Chen, Qiankun Cai, Aldobrando Broccolini, Luca Scarcia, Serena Abruzzese, Carlo Cirelli, Mauro Bergui, Andrea Romi, Erwah Kalsoum, Giulia Frauenfelder, Grzegorz Meder, Simona Scalise, Maria Porzia Ganimede, Luigi Bellini, Bruno Del Sette, Francesco Arba, Susanna Sammali, Andrea Salcuni, Sergio Lucio Vinci, Giacomo Cester, Luisa Roveri, Xianjun Huang, Wen Sun
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01478-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861574707707904
author Zhi-Xin Huang
Andrea M. Alexandre
Alessandro Pedicelli
Xuying He
Quanlong Hong
Yongkun Li
Ping Chen
Qiankun Cai
Aldobrando Broccolini
Luca Scarcia
Serena Abruzzese
Carlo Cirelli
Mauro Bergui
Andrea Romi
Erwah Kalsoum
Giulia Frauenfelder
Grzegorz Meder
Simona Scalise
Maria Porzia Ganimede
Luigi Bellini
Bruno Del Sette
Francesco Arba
Susanna Sammali
Andrea Salcuni
Sergio Lucio Vinci
Giacomo Cester
Luisa Roveri
Xianjun Huang
Wen Sun
author_facet Zhi-Xin Huang
Andrea M. Alexandre
Alessandro Pedicelli
Xuying He
Quanlong Hong
Yongkun Li
Ping Chen
Qiankun Cai
Aldobrando Broccolini
Luca Scarcia
Serena Abruzzese
Carlo Cirelli
Mauro Bergui
Andrea Romi
Erwah Kalsoum
Giulia Frauenfelder
Grzegorz Meder
Simona Scalise
Maria Porzia Ganimede
Luigi Bellini
Bruno Del Sette
Francesco Arba
Susanna Sammali
Andrea Salcuni
Sergio Lucio Vinci
Giacomo Cester
Luisa Roveri
Xianjun Huang
Wen Sun
author_sort Zhi-Xin Huang
collection DOAJ
description Abstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation.
format Article
id doaj-art-8b6a4748ba8743829eaeaf3dc38807a3
institution Kabale University
issn 2398-6352
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-8b6a4748ba8743829eaeaf3dc38807a32025-02-09T12:55:43ZengNature Portfolionpj Digital Medicine2398-63522025-02-01811910.1038/s41746-025-01478-5AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillationZhi-Xin Huang0Andrea M. Alexandre1Alessandro Pedicelli2Xuying He3Quanlong Hong4Yongkun Li5Ping Chen6Qiankun Cai7Aldobrando Broccolini8Luca Scarcia9Serena Abruzzese10Carlo Cirelli11Mauro Bergui12Andrea Romi13Erwah Kalsoum14Giulia Frauenfelder15Grzegorz Meder16Simona Scalise17Maria Porzia Ganimede18Luigi Bellini19Bruno Del Sette20Francesco Arba21Susanna Sammali22Andrea Salcuni23Sergio Lucio Vinci24Giacomo Cester25Luisa Roveri26Xianjun Huang27Wen Sun28NeuroMedical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, GuangzhouUOC Radiologia e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCSUOC Radiologia e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCSNeuroMedical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, GuangzhouDepartment of Neurology, Quanzhou First Hospital, QuanzhouDepartment of Neurology, Shengli Clinical Medical College of Fujian Medical University, FuzhouDepartment of Neurology, The First Hospital of Putian City, PutianDepartment of Neurology, Second Affiliated Hospital of Fujian Medical University, QuanzhouNeurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCSNeuroradiology Unit, Henri Mondor HospitalCatholic University School of MedicineDepartment of Human Neurosciences, Interventional Neuroradiology, University Hospital Policlinico Umberto IDepartment of Neuroscience, Neuroradiological Unit, University of Turin, Azienda Ospedaliera Città della Salute e della Scienza HospitalNeuroradiology Unit, IRCCS Policlinico San MatteoNeuroradiology Unit, Henri Mondor HospitalNeuroradiology Unit, AOU S Giovanni di Dio e Ruggi di AragonaDepartment of Interventional Radiology, Jan Biziel University Hospital No. 2, Ujejskiego 75 Street, 85-168UOC Neurologia-Stroke Unit, Ospedale Vito FazziInterventional Radiology Unit, “SS Annunziata” HospitalDepartment of Biomedicine and Prevention, University hospital of Rome “Tor Vergata”Neuroradiology Unit, IRCCS Ospedale Policlinico San MartinoStroke Unit, AOU Careggi University HospitalNEUROFARBA Department, University of FlorenceDepartment of Radiological Sciences, Oncology and Pathology, Sapienza University of RomeNeuroradiology Unit, Biomedical Sciences and of Morphologic and Functional Images, AOU Policlinico G. MartinoNeuroradiology Unit, Policlinico Universitario di PadovaNeurology Unit, stroke unit, IRCCS San Raffaele University HospitalDepartment of Neurology, Yijishan Hospital, Wannan Medical CollegeDepartment of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaAbstract Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation.https://doi.org/10.1038/s41746-025-01478-5
spellingShingle Zhi-Xin Huang
Andrea M. Alexandre
Alessandro Pedicelli
Xuying He
Quanlong Hong
Yongkun Li
Ping Chen
Qiankun Cai
Aldobrando Broccolini
Luca Scarcia
Serena Abruzzese
Carlo Cirelli
Mauro Bergui
Andrea Romi
Erwah Kalsoum
Giulia Frauenfelder
Grzegorz Meder
Simona Scalise
Maria Porzia Ganimede
Luigi Bellini
Bruno Del Sette
Francesco Arba
Susanna Sammali
Andrea Salcuni
Sergio Lucio Vinci
Giacomo Cester
Luisa Roveri
Xianjun Huang
Wen Sun
AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
npj Digital Medicine
title AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
title_full AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
title_fullStr AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
title_full_unstemmed AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
title_short AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
title_sort ai prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation
url https://doi.org/10.1038/s41746-025-01478-5
work_keys_str_mv AT zhixinhuang aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT andreamalexandre aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT alessandropedicelli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT xuyinghe aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT quanlonghong aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT yongkunli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT pingchen aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT qiankuncai aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT aldobrandobroccolini aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT lucascarcia aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT serenaabruzzese aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT carlocirelli aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT maurobergui aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT andrearomi aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT erwahkalsoum aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT giuliafrauenfelder aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT grzegorzmeder aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT simonascalise aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT mariaporziaganimede aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT luigibellini aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT brunodelsette aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT francescoarba aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT susannasammali aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT andreasalcuni aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT sergioluciovinci aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT giacomocester aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT luisaroveri aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT xianjunhuang aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation
AT wensun aipredictionmodelforendovasculartreatmentofvertebrobasilarocclusionwithatrialfibrillation