Handling Multicollinearity and Outliers in Logistic Regression Using the Robust Kibria–Lukman Estimator
Logistic regression models encounter challenges with correlated predictors and influential outliers. This study integrates robust estimators, including the Bianco–Yohai estimator (BY) and conditionally unbiased bounded influence estimator (CE), with the logistic Liu (LL), logistic ridge (LR), and lo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/14/1/19 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Logistic regression models encounter challenges with correlated predictors and influential outliers. This study integrates robust estimators, including the Bianco–Yohai estimator (BY) and conditionally unbiased bounded influence estimator (CE), with the logistic Liu (LL), logistic ridge (LR), and logistic KL (KL) estimators. The resulting estimators (LL-BY, LL-CE, LR-BY, LR-CE, KL-BY, and KL-CE) are evaluated through simulations and real-life examples. KL-BY emerges as the preferred choice, displaying superior performance by reducing mean squared error (MSE) values and exhibiting robustness against multicollinearity and outliers. Adopting KL-BY can lead to stable and accurate predictions in logistic regression analysis. |
---|---|
ISSN: | 2075-1680 |