Option Pricing Based on Modified Advection-Dispersion Equation: Stochastic Representation and Applications

In this paper, we first investigate the stochastic representation of the modified advection-dispersion equation, which is proved to be a subordinated stochastic process. Taking advantage of this result, we get the analytical solution and mean square displacement for the equation. Then, applying the...

Full description

Saved in:
Bibliographic Details
Main Authors: Longjin Lv, Luna Wang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/7168571
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we first investigate the stochastic representation of the modified advection-dispersion equation, which is proved to be a subordinated stochastic process. Taking advantage of this result, we get the analytical solution and mean square displacement for the equation. Then, applying the subordinated Brownian motion into the option pricing problem, we obtain the closed-form pricing formula for the European option, when the underlying of the option contract is supposed to be driven by the subordinated geometric Brownian motion. At last, we compare the obtained option pricing models with the classical Black–Scholes ones.
ISSN:1026-0226
1607-887X