Global Mittag-Leffler Synchronization of Fractional-Order Fuzzy Inertia Neural Networks with Reaction–Diffusion Terms Under Boundary Control

This study is devoted to solving the global Mittag-Leffler synchronization problem of fractional-order fuzzy reaction–diffusion inertial neural networks by using boundary control. Firstly, the considered network model incorporates the inertia term, reaction–diffusion term and fuzzy logic, thereby en...

Full description

Saved in:
Bibliographic Details
Main Authors: Lianyang Hu, Haijun Jiang, Cheng Hu, Yue Ren, Lvming Liu, Xuejiao Qin
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/405
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is devoted to solving the global Mittag-Leffler synchronization problem of fractional-order fuzzy reaction–diffusion inertial neural networks by using boundary control. Firstly, the considered network model incorporates the inertia term, reaction–diffusion term and fuzzy logic, thereby enhancing the existing model framework. Secondly, to prevent an increase in the number of state variables due to the reduced-order approach, a non-reduced-order method is fully utilized. Additionally, a boundary controller is designed to lower resource usage. Subsequently, under the Neumann boundary condition, the mixed boundary condition and the Robin boundary condition, three synchronization conditions are established with the help of the non-reduced-order approach and LMI technique, respectively. Lastly, two numerical examples are offered to verify the reliability of the theoretical results and the availability of the boundary controller through MATLAB simulations.
ISSN:2504-3110