The Proof and Decryption of Goldbach Conjecture
In this paper, a few mathematical bases are given firstly. Then, the step thinness τp of primes is given as τp = Lo1 = P1ΠP/(P−1) for the inner character, having an lnX logarithmic outer character. The “best estimation and mutual exchange equivalent” are easily obtained as Lo1 = P1Π P/(P−1)~τp~lnX(ε...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2023-08-01
|
| Series: | Computer Sciences & Mathematics Forum |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2813-0324/8/1/52 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, a few mathematical bases are given firstly. Then, the step thinness τp of primes is given as τp = Lo1 = P1ΠP/(P−1) for the inner character, having an lnX logarithmic outer character. The “best estimation and mutual exchange equivalent” are easily obtained as Lo1 = P1Π P/(P−1)~τp~lnX(ε). This is the principal contradiction, and P is the main aspect. Then, the sparsity τt of twin primes is defined as Lo2 = τt = P2 Π P/(P−2) = C2Lo1² = C2ln²X(C2 = 0.75739006). Then, the sparsity τg of the Goldbach pair and τb of both the twin and Goldbach pairs are obtained as Lo3 = τg = {2Lo1, Lo1², 2C2Lo1²} and Lo4 = τb =4.7Lo1³ (or they are omitted). Lastly, all conjectures can be proved with the same frame formula, N = X/LOK. The twin prime conjecture and Goldbach conjecture low bound are clearly and accurately proved with T = X/(C2Lo1²) = 1.32032X/ln²X and Gd = X/(2C2Lo1²) = 0.66016X/ln²X. Using Lo1 + C2 to decrypt the Selberg formula C(ω) = 2C(N) obtains the totally same results. |
|---|---|
| ISSN: | 2813-0324 |