Control Strategy for MMC Based on Super-Capacitor Energy Storage
In order to resolve the problems of the rapid variation of power system’s active power caused by grid-integrated renewable energy and pulsed loads, which will threaten the stability of adjacent generator units and power systems, a distributed energy storage system is proposed based on the modular mu...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
State Grid Energy Research Institute
2020-11-01
|
| Series: | Zhongguo dianli |
| Subjects: | |
| Online Access: | https://www.electricpower.com.cn/CN/10.11930/j.issn.1004-9649.202006159 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In order to resolve the problems of the rapid variation of power system’s active power caused by grid-integrated renewable energy and pulsed loads, which will threaten the stability of adjacent generator units and power systems, a distributed energy storage system is proposed based on the modular multilevel converter (MMC) integrated with super-capacitor energy storage. The bi-directional DC/DC converters are used to control the charge and discharge process of the energy storage system, and the design principles for relevant parameters are provided. The control strategy based on dual-closed-loop PI regulator and the phase shifted PWM technology is used to control the balance of super-capacitor energy and the capacitor voltage stability of the MMC sub-modules. The energy management mechanism is introduced to control the collaborative operation of the MMC and the DC/DC converters, subsequently realizing the real-time compensation for pulsed active power variation in medium- and high-voltage systems. The simulation results with Matlab/Simulink platform have verified the effectiveness of the proposed device and control strategy. |
|---|---|
| ISSN: | 1004-9649 |