Effect of the Addition of Cu and Al on the Microstructure, Phase Composition and Properties of a Ti-6Al-4V Alloy Obtained by Selective Laser Melting
The present study considers the samples of an Ti-6Al-4V alloy obtained by selective laser melting with the addition of a 10% Cu-Al powder mixture. The microstructure, elemental composition and phase composition, as well as the physico-chemical properties, have been investigated by the methods of ele...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-08-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/14/9/991 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The present study considers the samples of an Ti-6Al-4V alloy obtained by selective laser melting with the addition of a 10% Cu-Al powder mixture. The microstructure, elemental composition and phase composition, as well as the physico-chemical properties, have been investigated by the methods of electron microscopy, X-ray phase analysis, and bending testing. The obtained samples have a relative density of 98.5 ± 0.1%. The addition of the Cu-Al powder mixture facilitates supercooling during crystallization and solidification, which allows decreasing the size and changing the shape of the initial β-Ti grains. The constant cooling rate of the alloy typical for the SLM technology has been shown to be able to prevent martensitic transformation. The formation of a structure that consists of β-Ti grains, a dispersed eutectoid mixture of α-Ti and Ti<sub>2</sub>Cu grains, and a solid solution of Al in Cu has been revealed. In the case of doping by the 10% Cu-Al mixture, the physico-mechanical properties are improved. The hardness of the samples amounts to 390 HRC, with the bending strength being 1550 ± 20 MPa and deformation of 3.5 ± 0.2%. The developed alloy can be recommended for applications in the production of parts of jet and car engines, implants for medicine, and corrosion-resistant parts for the chemical industry. |
|---|---|
| ISSN: | 2075-4701 |