Stability Analysis of a Nonlinear Coupled Vibration Model in a Tandem Cold Rolling Mill

Mill chatter in tandem cold rolling mill is a major rejection to the quality and production of the strips. In most mill vibration models, either the roll mass is usually limited to vibrate in vertical direction and vertical-horizontal directions, or the multiple rolls system is simplified to a singl...

Full description

Saved in:
Bibliographic Details
Main Authors: Xing Lu, Jie Sun, Guangtao Li, Zhenhua Wang, Dianhua Zhang
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/4358631
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mill chatter in tandem cold rolling mill is a major rejection to the quality and production of the strips. In most mill vibration models, either the roll mass is usually limited to vibrate in vertical direction and vertical-horizontal directions, or the multiple rolls system is simplified to a single mass system. However, the torsional chatter is also a typical type of mill chatter, and the presence of intermediate roll and backup roll will affect the overall vibration of the mill structure system. In this paper, a newly cold rolling mill vibration model coupled with the dynamic rolling processing model and nonlinear vibration model is proposed with the consideration of dynamic coupling and nonlinear characteristics of the rolling process, multiroll equilibrium, and roll movement in both vertical-horizontal-torsional directions. By using Hopf bifurcation theorem and Routh–Hurwitz determinant, the existence of the Hopf bifurcation point of the mill vibration system and bifurcation characteristics are analyzed. At last, the influence of different rolling conditions on the stability of the coupled mill system is investigated, and these results can also be used to design an optimum rolling schedule and determine the appearance of mill chatter under certain rolling conditions.
ISSN:1070-9622
1875-9203