Modified sink strength model for dislocation in tungsten: Dependence on temperature and probability density distribution

Sink strength, as a fundamental parameter in mean-field approaches, describes the ability of sinks (e.g., dislocation lines) to capture migrating defects and is crucial for simulating the microstructure evolution of irradiation damage in nuclear materials. Here, taking body centered cubic tungsten (...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui-Zhi Ma, Yu-Hao Li, Yu-Ze Niu, Hong-Bo Zhou, Guang-Hong Lu
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179125000407
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sink strength, as a fundamental parameter in mean-field approaches, describes the ability of sinks (e.g., dislocation lines) to capture migrating defects and is crucial for simulating the microstructure evolution of irradiation damage in nuclear materials. Here, taking body centered cubic tungsten (W) as an example, we systematically investigate the sink strength of dislocation lines using the object Kinetic Monte Carlo (OKMC) method. It is found that there are noteworthy discrepancies of sink strength between the traditional theoretical expression and OKMC simulations. This should be attributed to two factors, namely temperature and probability density distribution. The former can be derived from a master curve that has already been proposed for 1D to 3D diffusion–reaction kinetics, while the latter can be well described by a modified analytical expression of sink strength for dislocation lines. By incorporating these factors, the discrepancy between theoretical results and OKMC simulations is eliminated. Notably, the results of defect evolution in irradiated W, obtained using the modified sink strength expression, exhibit a greater consistency with experimental observations than those derived from the conventional model. These results provide a better insight into the sink strength model, and have broad implications for understanding and reproducing the microstructure evolution of irradiation defects in materials.
ISSN:2352-1791