A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework

Abstract The plasmapause position is crucial for understanding magnetospheric dynamics and space weather forecasting. This study pioneers the integration of lunar phase (LP) into plasmapause modeling using two neural network architectures (BP and fully connected neural network) and a large database...

Full description

Saved in:
Bibliographic Details
Main Authors: Yajun Li, Chao Xiao, Quanqi Shi, Hongtao Huang, Huizi Wang, Anmin Tian, Die Duan, Ganming Ren, Tao Tang, Yang Lin, Chenghao Li, Jiajia Suo
Format: Article
Language:English
Published: Wiley 2025-07-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2025GL116485
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849245672455274496
author Yajun Li
Chao Xiao
Quanqi Shi
Hongtao Huang
Huizi Wang
Anmin Tian
Die Duan
Ganming Ren
Tao Tang
Yang Lin
Chenghao Li
Jiajia Suo
author_facet Yajun Li
Chao Xiao
Quanqi Shi
Hongtao Huang
Huizi Wang
Anmin Tian
Die Duan
Ganming Ren
Tao Tang
Yang Lin
Chenghao Li
Jiajia Suo
author_sort Yajun Li
collection DOAJ
description Abstract The plasmapause position is crucial for understanding magnetospheric dynamics and space weather forecasting. This study pioneers the integration of lunar phase (LP) into plasmapause modeling using two neural network architectures (BP and fully connected neural network) and a large database of 37,869 crossing events from 1977 to 2015. Our LP‐coupled models achieved a 15% reduction in root mean square error compared to prior artificial neural network models and outperforms empirical benchmarks (e.g., new solar wind‐driven global dynamic plasmapause model), with optimal performance in the dusk sector (18–24 magnetic local time) where lunar tidal effects peak. This work establishes LP as a critical modulator of plasmapause dynamics, challenging the conventional solar wind‐driven paradigm. The neural network framework combining LP modulation with solar wind/geomagnetic parameters yields significant improvements in global plasmapause prediction accuracy, providing a foundation for more precise space weather forecasting. Future research could further refine predictions by incorporating real‐time tilt angle data and coupling with first‐principles simulations of neutral atmosphere tides.
format Article
id doaj-art-8a7f542587a24b6291ffc88b3fcef6db
institution Kabale University
issn 0094-8276
1944-8007
language English
publishDate 2025-07-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-8a7f542587a24b6291ffc88b3fcef6db2025-08-20T03:58:44ZengWileyGeophysical Research Letters0094-82761944-80072025-07-015214n/an/a10.1029/2025GL116485A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning FrameworkYajun Li0Chao Xiao1Quanqi Shi2Hongtao Huang3Huizi Wang4Anmin Tian5Die Duan6Ganming Ren7Tao Tang8Yang Lin9Chenghao Li10Jiajia Suo11Institute of Space Sciences Shandong University Weihai ChinaInstitute of Space Sciences Shandong University Weihai ChinaInstitute of Space Sciences Shandong University Weihai ChinaCollege of Advanced Interdisciplinary Studies National University of Defense Technology Changsha ChinaInstitute of Space Sciences Shandong University Weihai ChinaInstitute of Space Sciences Shandong University Weihai ChinaCollege of Advanced Interdisciplinary Studies National University of Defense Technology Changsha ChinaCollege of Advanced Interdisciplinary Studies National University of Defense Technology Changsha ChinaInstitute of Space Sciences Shandong University Weihai ChinaCollege of Advanced Interdisciplinary Studies National University of Defense Technology Changsha ChinaCollege of Advanced Interdisciplinary Studies National University of Defense Technology Changsha ChinaInstitute of Space Sciences Shandong University Weihai ChinaAbstract The plasmapause position is crucial for understanding magnetospheric dynamics and space weather forecasting. This study pioneers the integration of lunar phase (LP) into plasmapause modeling using two neural network architectures (BP and fully connected neural network) and a large database of 37,869 crossing events from 1977 to 2015. Our LP‐coupled models achieved a 15% reduction in root mean square error compared to prior artificial neural network models and outperforms empirical benchmarks (e.g., new solar wind‐driven global dynamic plasmapause model), with optimal performance in the dusk sector (18–24 magnetic local time) where lunar tidal effects peak. This work establishes LP as a critical modulator of plasmapause dynamics, challenging the conventional solar wind‐driven paradigm. The neural network framework combining LP modulation with solar wind/geomagnetic parameters yields significant improvements in global plasmapause prediction accuracy, providing a foundation for more precise space weather forecasting. Future research could further refine predictions by incorporating real‐time tilt angle data and coupling with first‐principles simulations of neutral atmosphere tides.https://doi.org/10.1029/2025GL116485lunar phaseplasmapauseneural networkspace weather forecast
spellingShingle Yajun Li
Chao Xiao
Quanqi Shi
Hongtao Huang
Huizi Wang
Anmin Tian
Die Duan
Ganming Ren
Tao Tang
Yang Lin
Chenghao Li
Jiajia Suo
A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
Geophysical Research Letters
lunar phase
plasmapause
neural network
space weather forecast
title A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
title_full A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
title_fullStr A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
title_full_unstemmed A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
title_short A Predictive Model of the Position of Plasmapause Based on Lunar Phase and Deep Learning Framework
title_sort predictive model of the position of plasmapause based on lunar phase and deep learning framework
topic lunar phase
plasmapause
neural network
space weather forecast
url https://doi.org/10.1029/2025GL116485
work_keys_str_mv AT yajunli apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT chaoxiao apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT quanqishi apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT hongtaohuang apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT huiziwang apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT anmintian apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT dieduan apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT ganmingren apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT taotang apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT yanglin apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT chenghaoli apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT jiajiasuo apredictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT yajunli predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT chaoxiao predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT quanqishi predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT hongtaohuang predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT huiziwang predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT anmintian predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT dieduan predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT ganmingren predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT taotang predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT yanglin predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT chenghaoli predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework
AT jiajiasuo predictivemodelofthepositionofplasmapausebasedonlunarphaseanddeeplearningframework