Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling

Summary: Adipose tissue remodels via hypertrophy or hyperplasia in response to nutrient status, but the mechanisms governing these expansion modes remain unclear. Here, we identify a nutrient-sensitive epigenetic circuit linking glucose metabolism to chromatin remodeling during adipogenesis. Upon gl...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenxu Yang, Makoto Arai, Eko Fuji Ariyanto, Ji Zhang, Debby Mirani Lubis, Ryo Ito, Shiyu Xie, Mio Nitta, Fuka Kawashima, Tomofumi Ishitsuka, Chaoran Yang, Tomohiro Suzuki, Tetsuro Komatsu, Hina Sagae, Hitomi Jin, Hiroki Takahashi, Eri Kobayashi, Yuchen Wei, Bohao Liu, Hyunmi Choi, Youichiro Wada, Toshiya Tanaka, Tsuyoshi Osawa, Hiroshi Kimura, Tatsuhiko Kodama, Hiroyuki Aburatani, Makoto Tachibana, Yoichi Shinkai, Takeshi Inagaki, Tomoyoshi Soga, Timothy F. Osborne, Takeshi Yoneshiro, Yoshihiro Matsumura, Juro Sakai
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725008319
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849412305570234368
author Chenxu Yang
Makoto Arai
Eko Fuji Ariyanto
Ji Zhang
Debby Mirani Lubis
Ryo Ito
Shiyu Xie
Mio Nitta
Fuka Kawashima
Tomofumi Ishitsuka
Chaoran Yang
Tomohiro Suzuki
Tetsuro Komatsu
Hina Sagae
Hitomi Jin
Hiroki Takahashi
Eri Kobayashi
Yuchen Wei
Bohao Liu
Hyunmi Choi
Youichiro Wada
Toshiya Tanaka
Tsuyoshi Osawa
Hiroshi Kimura
Tatsuhiko Kodama
Hiroyuki Aburatani
Makoto Tachibana
Yoichi Shinkai
Takeshi Inagaki
Tomoyoshi Soga
Timothy F. Osborne
Takeshi Yoneshiro
Yoshihiro Matsumura
Juro Sakai
author_facet Chenxu Yang
Makoto Arai
Eko Fuji Ariyanto
Ji Zhang
Debby Mirani Lubis
Ryo Ito
Shiyu Xie
Mio Nitta
Fuka Kawashima
Tomofumi Ishitsuka
Chaoran Yang
Tomohiro Suzuki
Tetsuro Komatsu
Hina Sagae
Hitomi Jin
Hiroki Takahashi
Eri Kobayashi
Yuchen Wei
Bohao Liu
Hyunmi Choi
Youichiro Wada
Toshiya Tanaka
Tsuyoshi Osawa
Hiroshi Kimura
Tatsuhiko Kodama
Hiroyuki Aburatani
Makoto Tachibana
Yoichi Shinkai
Takeshi Inagaki
Tomoyoshi Soga
Timothy F. Osborne
Takeshi Yoneshiro
Yoshihiro Matsumura
Juro Sakai
author_sort Chenxu Yang
collection DOAJ
description Summary: Adipose tissue remodels via hypertrophy or hyperplasia in response to nutrient status, but the mechanisms governing these expansion modes remain unclear. Here, we identify a nutrient-sensitive epigenetic circuit linking glucose metabolism to chromatin remodeling during adipogenesis. Upon glucose stimulation, α-ketoglutarate (α-KG) accumulates in the nucleus and activates the histone demethylase JMJD1A to remove repressive histone H3 lysine 9 dimethylation (H3K9me2) marks at glycolytic and adipogenic gene loci, including Pparg. JMJD1A is recruited to pre-marked promoter chromatin via nuclear factor IC (NFIC), enabling carbohydrate-responsive element-binding protein (ChREBP) binding and transcriptional activation. This feedforward mechanism couples nutrient flux to chromatin accessibility and gene expression. In vivo, JMJD1A is essential for de novo adipogenesis and hyperplastic expansion in visceral fat under nutrient excess. JMJD1A deficiency impairs hyperplasia, exacerbates adipocyte hypertrophy, and induces local inflammation. These findings define a glucose-α-KG-JMJD1A-ChREBP axis regulating depot-specific adipogenesis and uncover a chromatin-based mechanism by which glucose metabolism governs adaptive adipose tissue remodeling.
format Article
id doaj-art-8a7cc2c0164e40c48aaae429546f1f0a
institution Kabale University
issn 2211-1247
language English
publishDate 2025-08-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj-art-8a7cc2c0164e40c48aaae429546f1f0a2025-08-20T03:34:29ZengElsevierCell Reports2211-12472025-08-0144811606010.1016/j.celrep.2025.116060Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodelingChenxu Yang0Makoto Arai1Eko Fuji Ariyanto2Ji Zhang3Debby Mirani Lubis4Ryo Ito5Shiyu Xie6Mio Nitta7Fuka Kawashima8Tomofumi Ishitsuka9Chaoran Yang10Tomohiro Suzuki11Tetsuro Komatsu12Hina Sagae13Hitomi Jin14Hiroki Takahashi15Eri Kobayashi16Yuchen Wei17Bohao Liu18Hyunmi Choi19Youichiro Wada20Toshiya Tanaka21Tsuyoshi Osawa22Hiroshi Kimura23Tatsuhiko Kodama24Hiroyuki Aburatani25Makoto Tachibana26Yoichi Shinkai27Takeshi Inagaki28Tomoyoshi Soga29Timothy F. Osborne30Takeshi Yoneshiro31Yoshihiro Matsumura32Juro Sakai33Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, IndonesiaDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanLaboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, JapanLaboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, JapanIsotope Science Center, The University of Tokyo, Tokyo 113-0032, JapanLaboratory for Systems Biology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, JapanDivision of Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, JapanCell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, JapanLaboratory for Systems Biology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, JapanGenome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, JapanLaboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, JapanCellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, JapanLaboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, JapanInstitute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 108-8345, JapanDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, and Medicine in the Division of Endocrinology, Diabetes and Metabolism of the Johns Hopkins University School of Medicine, Petersburg, FL, USADivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Corresponding authorDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Corresponding authorDivision of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Corresponding authorSummary: Adipose tissue remodels via hypertrophy or hyperplasia in response to nutrient status, but the mechanisms governing these expansion modes remain unclear. Here, we identify a nutrient-sensitive epigenetic circuit linking glucose metabolism to chromatin remodeling during adipogenesis. Upon glucose stimulation, α-ketoglutarate (α-KG) accumulates in the nucleus and activates the histone demethylase JMJD1A to remove repressive histone H3 lysine 9 dimethylation (H3K9me2) marks at glycolytic and adipogenic gene loci, including Pparg. JMJD1A is recruited to pre-marked promoter chromatin via nuclear factor IC (NFIC), enabling carbohydrate-responsive element-binding protein (ChREBP) binding and transcriptional activation. This feedforward mechanism couples nutrient flux to chromatin accessibility and gene expression. In vivo, JMJD1A is essential for de novo adipogenesis and hyperplastic expansion in visceral fat under nutrient excess. JMJD1A deficiency impairs hyperplasia, exacerbates adipocyte hypertrophy, and induces local inflammation. These findings define a glucose-α-KG-JMJD1A-ChREBP axis regulating depot-specific adipogenesis and uncover a chromatin-based mechanism by which glucose metabolism governs adaptive adipose tissue remodeling.http://www.sciencedirect.com/science/article/pii/S2211124725008319CP: Metabolism
spellingShingle Chenxu Yang
Makoto Arai
Eko Fuji Ariyanto
Ji Zhang
Debby Mirani Lubis
Ryo Ito
Shiyu Xie
Mio Nitta
Fuka Kawashima
Tomofumi Ishitsuka
Chaoran Yang
Tomohiro Suzuki
Tetsuro Komatsu
Hina Sagae
Hitomi Jin
Hiroki Takahashi
Eri Kobayashi
Yuchen Wei
Bohao Liu
Hyunmi Choi
Youichiro Wada
Toshiya Tanaka
Tsuyoshi Osawa
Hiroshi Kimura
Tatsuhiko Kodama
Hiroyuki Aburatani
Makoto Tachibana
Yoichi Shinkai
Takeshi Inagaki
Tomoyoshi Soga
Timothy F. Osborne
Takeshi Yoneshiro
Yoshihiro Matsumura
Juro Sakai
Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
Cell Reports
CP: Metabolism
title Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
title_full Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
title_fullStr Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
title_full_unstemmed Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
title_short Glucose-activated JMJD1A drives visceral adipogenesis via α-ketoglutarate-dependent chromatin remodeling
title_sort glucose activated jmjd1a drives visceral adipogenesis via α ketoglutarate dependent chromatin remodeling
topic CP: Metabolism
url http://www.sciencedirect.com/science/article/pii/S2211124725008319
work_keys_str_mv AT chenxuyang glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT makotoarai glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT ekofujiariyanto glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT jizhang glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT debbymiranilubis glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT ryoito glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT shiyuxie glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT mionitta glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT fukakawashima glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tomofumiishitsuka glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT chaoranyang glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tomohirosuzuki glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tetsurokomatsu glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hinasagae glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hitomijin glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hirokitakahashi glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT erikobayashi glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT yuchenwei glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT bohaoliu glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hyunmichoi glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT youichirowada glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT toshiyatanaka glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tsuyoshiosawa glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hiroshikimura glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tatsuhikokodama glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT hiroyukiaburatani glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT makototachibana glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT yoichishinkai glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT takeshiinagaki glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT tomoyoshisoga glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT timothyfosborne glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT takeshiyoneshiro glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT yoshihiromatsumura glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling
AT jurosakai glucoseactivatedjmjd1adrivesvisceraladipogenesisviaaketoglutaratedependentchromatinremodeling