On the charge algebra of causal diamonds in three dimensional gravity

Abstract Covariant phase space methods are applied to the analysis of a causal diamond in 2+1-dimensional pure Einstein gravity. It is found that the reduced phase space is parametrized by a family of charges with a dual geometrical interpretation: they are geometric observables on the corner of the...

Full description

Saved in:
Bibliographic Details
Main Author: Pranav Pulakkat
Format: Article
Language:English
Published: SpringerOpen 2024-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2024)251
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Covariant phase space methods are applied to the analysis of a causal diamond in 2+1-dimensional pure Einstein gravity. It is found that the reduced phase space is parametrized by a family of charges with a dual geometrical interpretation: they are geometric observables on the corner of the diamond, and they generate diffeomorphisms. The Poisson brackets among them close into an algebra. Knowledge of the corner charges therefore permits reconstruction of the diamond geometry, which realizes a form of local holography. The results are contrasted with the literature, and the path to a quantum description of spacetime geometry is discussed.
ISSN:1029-8479