A Fusion Face Recognition Approach Based on 7-Layer Deep Learning Neural Network

This paper presents a method for recognizing human faces with facial expression. In the proposed approach, a motion history image (MHI) is employed to get the features in an expressive face. The face can be seen as a kind of physiological characteristic of a human and the expressions are behavioral...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianzheng Liu, Chunlin Fang, Chao Wu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2016/8637260
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method for recognizing human faces with facial expression. In the proposed approach, a motion history image (MHI) is employed to get the features in an expressive face. The face can be seen as a kind of physiological characteristic of a human and the expressions are behavioral characteristics. We fused the 2D images of a face and MHIs which were generated from the same face’s image sequences with expression. Then the fusion features were used to feed a 7-layer deep learning neural network. The previous 6 layers of the whole network can be seen as an autoencoder network which can reduce the dimension of the fusion features. The last layer of the network can be seen as a softmax regression; we used it to get the identification decision. Experimental results demonstrated that our proposed method performs favorably against several state-of-the-art methods.
ISSN:2090-0147
2090-0155