Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems

Hyperuniform states of matter exhibit unusual suppression of density fluctuations at large scales, contrasting sharply with typical disordered configurations. Various types of hyperuniformity emerge in multicomponent disordered systems, significantly enhancing their functional properties for advance...

Full description

Saved in:
Bibliographic Details
Main Author: Hiroshi Frusawa
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/39
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperuniform states of matter exhibit unusual suppression of density fluctuations at large scales, contrasting sharply with typical disordered configurations. Various types of hyperuniformity emerge in multicomponent disordered systems, significantly enhancing their functional properties for advanced applications. This paper focuses on developing a theoretical framework for two-component hyperuniform systems. We provide a robust theoretical basis to identify novel conditions on structure factors for a variety of hyperuniform binary mixtures, classifying them into five distinct types with seven unique states. Our findings also offer valuable guidelines for designing multihyperuniform materials where each component preserves hyperuniformity, added to the overall hyperuniformity.
ISSN:2075-1680