Quantum magic and computational complexity in the neutrino sector
We consider the quantum magic in systems of dense neutrinos undergoing coherent flavor transformations, relevant for supernova and neutron-star binary mergers. Mapping the three-flavor-neutrino system to qutrits, the evolution of quantum magic is explored in the single scattering angle limit for a s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-06-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.7.023228 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider the quantum magic in systems of dense neutrinos undergoing coherent flavor transformations, relevant for supernova and neutron-star binary mergers. Mapping the three-flavor-neutrino system to qutrits, the evolution of quantum magic is explored in the single scattering angle limit for a selection of initial tensor-product pure states for N_{ν}≤8 neutrinos. For |ν_{e}〉^{⊗N_{ν}} initial states, the magic, as measured by the α=2 stabilizer Renyi entropy M_{2}, is found to decrease with radial distance from the neutrino sphere, reaching a value that lies below the maximum for tensor-product qutrit states. Further, the asymptotic magic per neutrino, M_{2}/N_{ν}, decreases with increasing N_{ν}. In contrast, the magic evolving from states containing all three flavors reaches values only possible with entanglement, with the asymptotic M_{2}/N_{ν} increasing with N_{ν}. These results highlight the connection between the complexity in simulating quantum physical systems and the parameters of the Standard Model. |
|---|---|
| ISSN: | 2643-1564 |