Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach

In nature, closely related species often exhibit diverse characteristics, challenging simplistic line interpretations of trait evolution. For these species, the evolutionary dynamics of one trait may differ markedly from another, with some traits evolving at a slower pace and others rapidly diversif...

Full description

Saved in:
Bibliographic Details
Main Authors: Dwueng-Chwuan Jhwueng, Chia-Hua Chang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/170
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549157518540800
author Dwueng-Chwuan Jhwueng
Chia-Hua Chang
author_facet Dwueng-Chwuan Jhwueng
Chia-Hua Chang
author_sort Dwueng-Chwuan Jhwueng
collection DOAJ
description In nature, closely related species often exhibit diverse characteristics, challenging simplistic line interpretations of trait evolution. For these species, the evolutionary dynamics of one trait may differ markedly from another, with some traits evolving at a slower pace and others rapidly diversifying. In light of this complexity and concerning the phenomenon of trait relationships that escape line measurement, we introduce a novel general adaptive optimal regression model, grounded on polynomial relationships. This approach seeks to capture intricate patterns in trait evolution by considering them as continuous stochastic variables along a phylogenetic tree. Using polynomial functions, the model offers a holistic and comprehensive description of the traits of the studied species, accounting for both decreasing and increasing trends over evolutionary time. We propose two sets of optimal adaptive evolutionary polynomial regression models of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mrow><mi>t</mi><mi>h</mi></mrow></msup></semantics></math></inline-formula> order, named the Ornstein–Uhlenbeck Brownian Motion Polynomial (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>OUBMP</mi><mi>k</mi></msub></semantics></math></inline-formula>) model and Ornstein–Uhlenbeck Ornstein–Uhlenbeck Polynomial (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>OUOUP</mi><mi>k</mi></msub></semantics></math></inline-formula>) model, respectively. Assume that the main trait value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>y</mi><mi>t</mi></msub></semantics></math></inline-formula> is a random variable of the Ornstein–Uhlenbeck (OU) process and that its optimal adaptive value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>θ</mi><mi>t</mi><mi>y</mi></msubsup></semantics></math></inline-formula> has a polynomial relationship with other traits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>x</mi><mi>t</mi></msub></semantics></math></inline-formula> for statistical modeling, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>x</mi><mi>t</mi></msub></semantics></math></inline-formula> can be a random variable of Brownian motion (BM) or OU process. As analytical representations for the likelihood of the models are not feasible, we implement an approximate Bayesian computation (ABC) technique to assess the performance through simulation. We also plan to apply models to the empirical study using the two datasets: the longevity vs. fecundity in the Mediterranean nekton group, and the trophic niche breadth vs. body mass in carnivores in a European forest region.
format Article
id doaj-art-89cfb5b41d144c2aaa1002919aaf9e86
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-89cfb5b41d144c2aaa1002919aaf9e862025-01-10T13:18:30ZengMDPI AGMathematics2227-73902025-01-0113117010.3390/math13010170Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation ApproachDwueng-Chwuan Jhwueng0Chia-Hua Chang1Department of Statistics, Feng-Chia University, Taichung 40724, TaiwanDepartment of Statistics, Feng-Chia University, Taichung 40724, TaiwanIn nature, closely related species often exhibit diverse characteristics, challenging simplistic line interpretations of trait evolution. For these species, the evolutionary dynamics of one trait may differ markedly from another, with some traits evolving at a slower pace and others rapidly diversifying. In light of this complexity and concerning the phenomenon of trait relationships that escape line measurement, we introduce a novel general adaptive optimal regression model, grounded on polynomial relationships. This approach seeks to capture intricate patterns in trait evolution by considering them as continuous stochastic variables along a phylogenetic tree. Using polynomial functions, the model offers a holistic and comprehensive description of the traits of the studied species, accounting for both decreasing and increasing trends over evolutionary time. We propose two sets of optimal adaptive evolutionary polynomial regression models of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mrow><mi>t</mi><mi>h</mi></mrow></msup></semantics></math></inline-formula> order, named the Ornstein–Uhlenbeck Brownian Motion Polynomial (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>OUBMP</mi><mi>k</mi></msub></semantics></math></inline-formula>) model and Ornstein–Uhlenbeck Ornstein–Uhlenbeck Polynomial (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>OUOUP</mi><mi>k</mi></msub></semantics></math></inline-formula>) model, respectively. Assume that the main trait value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>y</mi><mi>t</mi></msub></semantics></math></inline-formula> is a random variable of the Ornstein–Uhlenbeck (OU) process and that its optimal adaptive value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>θ</mi><mi>t</mi><mi>y</mi></msubsup></semantics></math></inline-formula> has a polynomial relationship with other traits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>x</mi><mi>t</mi></msub></semantics></math></inline-formula> for statistical modeling, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>x</mi><mi>t</mi></msub></semantics></math></inline-formula> can be a random variable of Brownian motion (BM) or OU process. As analytical representations for the likelihood of the models are not feasible, we implement an approximate Bayesian computation (ABC) technique to assess the performance through simulation. We also plan to apply models to the empirical study using the two datasets: the longevity vs. fecundity in the Mediterranean nekton group, and the trophic niche breadth vs. body mass in carnivores in a European forest region.https://www.mdpi.com/2227-7390/13/1/170Brownian motionOrnstein–Uhlenbeck processpolynomial regressionadaptive trait evolutionphylogenetic comparative analysisapproximate Bayesian computation
spellingShingle Dwueng-Chwuan Jhwueng
Chia-Hua Chang
Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
Mathematics
Brownian motion
Ornstein–Uhlenbeck process
polynomial regression
adaptive trait evolution
phylogenetic comparative analysis
approximate Bayesian computation
title Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
title_full Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
title_fullStr Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
title_full_unstemmed Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
title_short Stochastic Modeling of Adaptive Trait Evolution in Phylogenetics: A Polynomial Regression and Approximate Bayesian Computation Approach
title_sort stochastic modeling of adaptive trait evolution in phylogenetics a polynomial regression and approximate bayesian computation approach
topic Brownian motion
Ornstein–Uhlenbeck process
polynomial regression
adaptive trait evolution
phylogenetic comparative analysis
approximate Bayesian computation
url https://www.mdpi.com/2227-7390/13/1/170
work_keys_str_mv AT dwuengchwuanjhwueng stochasticmodelingofadaptivetraitevolutioninphylogeneticsapolynomialregressionandapproximatebayesiancomputationapproach
AT chiahuachang stochasticmodelingofadaptivetraitevolutioninphylogeneticsapolynomialregressionandapproximatebayesiancomputationapproach