Parametric design and numerical analysis of super long span upper-support thrust-bearing concrete arch bridge
Abstract With the progress of construction technology and the application of high-performance materials, arch bridges are constantly breaking the span records. This study conducts parametric design and numerical analysis on upper-support thrust-bearing concrete arch bridges (UTCAB) with spans rangin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-02-01
|
Series: | Advances in Bridge Engineering |
Subjects: | |
Online Access: | https://doi.org/10.1186/s43251-024-00151-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract With the progress of construction technology and the application of high-performance materials, arch bridges are constantly breaking the span records. This study conducts parametric design and numerical analysis on upper-support thrust-bearing concrete arch bridges (UTCAB) with spans ranging from 450 to 2000 m, utilizing concrete of different strengths to explore the feasibility limits of spans. Through parameter sensitivity analysis, the study determines the reasonable parametric design of UTCAB with different spans. The results of static wind response analysis indicate that as the span increases, wind load gradually becomes the control load, but after comprehensive consideration, it is unnecessary to install installing tuyeres on the main arch to reduce the wind load. Ultimate bearing capacity analysis is conducted, and the results confirms that all parametric designs meet the requirements. Research on the impact of nonlinearity reveals that material nonlinearity has a much greater impact on ultimate bearing capacity than geometric nonlinearity. Considering the construction feasibility, the recommended feasible maximum span is 1200 m. This study can provide valuable reference for the future design of super long span upper-support thrust-bearing concrete arch bridges. |
---|---|
ISSN: | 2662-5407 |