Co-Secure Domination Number in Some Graphs

Let <i>G</i> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo&...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiatong Cui, Tianhao Li, Jiayuan Zhang, Xiaodong Chen, Liming Xiong
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/10
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589129090596864
author Jiatong Cui
Tianhao Li
Jiayuan Zhang
Xiaodong Chen
Liming Xiong
author_facet Jiatong Cui
Tianhao Li
Jiayuan Zhang
Xiaodong Chen
Liming Xiong
author_sort Jiatong Cui
collection DOAJ
description Let <i>G</i> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> If <i>S</i> is a dominating set of <i>G</i>, and for each vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> there is a neighbor of <i>u</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>,</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>v</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>u</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a dominating set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>,</mo></mrow></semantics></math></inline-formula> then <i>S</i> is a secure dominating set (SDS) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> Conversely, <i>S</i> is a co-secure dominating set (CSDS) of <i>G</i> if <i>S</i> is a dominating set of <i>G</i> and for each vertex <i>v</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> contains a neighbor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>,</mo></mrow></semantics></math></inline-formula> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>v</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>u</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a dominating set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> The minimum cardinality of a CSDS (resp. SDS) of <i>G</i> is the co-secure (resp. secure) domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> We use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> to denote the co-secure domination number and secure domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>,</mo></mrow></semantics></math></inline-formula> respectively. Arumugam et al. proposed two questions: (1) Characterize a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the independence number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>;</mo></mrow></semantics></math></inline-formula> (2) Characterize a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> In this paper, we characterize some forbidden induced subgraphs for a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>; moreover, we obtain that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for each <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>K</mi><mn>3</mn></msub><mo>,</mo><msub><mi>C</mi><mn>5</mn></msub><mo>,</mo><msub><mi>P</mi><mn>5</mn></msub><mo>}</mo></mrow></semantics></math></inline-formula>-free graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></semantics></math></inline-formula> Our conclusions can generalize some known results.
format Article
id doaj-art-89778b7225cc420ca6aa7536507b009a
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-89778b7225cc420ca6aa7536507b009a2025-01-24T13:22:08ZengMDPI AGAxioms2075-16802024-12-011411010.3390/axioms14010010Co-Secure Domination Number in Some GraphsJiatong Cui0Tianhao Li1Jiayuan Zhang2Xiaodong Chen3Liming Xiong4School of Mathematics, Liaoning Normal University, Dalian 116029, ChinaSchool of Mathematics, Liaoning Normal University, Dalian 116029, ChinaSchool of Mathematics, Liaoning Normal University, Dalian 116029, ChinaSchool of Mathematics, Liaoning Normal University, Dalian 116029, ChinaSchool of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, ChinaLet <i>G</i> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> If <i>S</i> is a dominating set of <i>G</i>, and for each vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> there is a neighbor of <i>u</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>,</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>v</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>u</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a dominating set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>,</mo></mrow></semantics></math></inline-formula> then <i>S</i> is a secure dominating set (SDS) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> Conversely, <i>S</i> is a co-secure dominating set (CSDS) of <i>G</i> if <i>S</i> is a dominating set of <i>G</i> and for each vertex <i>v</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>,</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> contains a neighbor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>,</mo></mrow></semantics></math></inline-formula> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>v</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>u</mi><mo>}</mo></mrow></semantics></math></inline-formula> is a dominating set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> The minimum cardinality of a CSDS (resp. SDS) of <i>G</i> is the co-secure (resp. secure) domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>.</mo></mrow></semantics></math></inline-formula> We use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> to denote the co-secure domination number and secure domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>,</mo></mrow></semantics></math></inline-formula> respectively. Arumugam et al. proposed two questions: (1) Characterize a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the independence number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>;</mo></mrow></semantics></math></inline-formula> (2) Characterize a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> In this paper, we characterize some forbidden induced subgraphs for a graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>; moreover, we obtain that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>c</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>γ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for each <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>K</mi><mn>3</mn></msub><mo>,</mo><msub><mi>C</mi><mn>5</mn></msub><mo>,</mo><msub><mi>P</mi><mn>5</mn></msub><mo>}</mo></mrow></semantics></math></inline-formula>-free graph <i>G</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></semantics></math></inline-formula> Our conclusions can generalize some known results.https://www.mdpi.com/2075-1680/14/1/10co-secure dominating setsecure dominating setco-secure domination number
spellingShingle Jiatong Cui
Tianhao Li
Jiayuan Zhang
Xiaodong Chen
Liming Xiong
Co-Secure Domination Number in Some Graphs
Axioms
co-secure dominating set
secure dominating set
co-secure domination number
title Co-Secure Domination Number in Some Graphs
title_full Co-Secure Domination Number in Some Graphs
title_fullStr Co-Secure Domination Number in Some Graphs
title_full_unstemmed Co-Secure Domination Number in Some Graphs
title_short Co-Secure Domination Number in Some Graphs
title_sort co secure domination number in some graphs
topic co-secure dominating set
secure dominating set
co-secure domination number
url https://www.mdpi.com/2075-1680/14/1/10
work_keys_str_mv AT jiatongcui cosecuredominationnumberinsomegraphs
AT tianhaoli cosecuredominationnumberinsomegraphs
AT jiayuanzhang cosecuredominationnumberinsomegraphs
AT xiaodongchen cosecuredominationnumberinsomegraphs
AT limingxiong cosecuredominationnumberinsomegraphs